IGLib  1.7.2
The IGLib base library for development of numerical, technical and business applications.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
IG.Num.NeuralTrainingParameters Class Reference

Contains Parameters that define neural network architecture and trainig procedure, together with achieved results after training such as various error norms. More...

+ Collaboration diagram for IG.Num.NeuralTrainingParameters:

Classes

class  ComparerBase
 Base comparer class (implementation of the IComparer{NeuralTrainingParameters} interface) for conmparing objects of type NeuralTrainingParameters More...
 
class  ComparerErrorTrainingVector
 
class  ComparerTrainingTime
 

Public Member Functions

void SetEpochNumbers (int[] epochNumbers)
 Sets the list of epoch numbers at which convergence data was sampled. More...
 
void SetEpochNumbers (List< int > epochNumbers)
 Sets the list of epoch numbers at which convergence data was sampled. More...
 
void SetEpochErrorsRms (double[] errors)
 Sets the list of sampled RMS errors that correspond to epoch numbers from EpochNumbers. More...
 
void SetEpochErrorsRms (List< double > errors)
 Sets the list of sampled RMS errors corresponding to epoch numbers from EpochNumbers. More...
 
void SetEpochErrorsAbs (double[] errors)
 Sets the list of sampled absolute errors that correspond to epoch numbers from EpochNumbers. More...
 
void SetEpochErrorsAbs (List< double > errors)
 Sets the list of sampled absolute errors corresponding to epoch numbers from EpochNumbers. More...
 
void CopyFrom (NeuralApproximatorBase nn)
 Copies current data from the specified neural network approximator. More...
 
void CopyResultsFrom (NeuralApproximatorBase nn)
 Copies only results from the trained network to the current object. More...
 
void CopyTo (NeuralApproximatorBase nn)
 Copies data that determine neural network and training procedure (such as network architecture, training parameters, tolerances, etc.) from the current object to the specified neural network approximator. This enables to restore training contitions of a peviour training procedure. More...
 

Static Public Member Functions

static void SaveJson (NeuralTrainingParameters trainingParameters, string filePath)
 Saves (serializes) the specified training parameters object to the specified JSON file. File is owerwritten if it exists. More...
 
static void SaveJson (NeuralTrainingParameters trainingParameters, string filePath, bool append)
 Saves (serializes) the specified training parameters object to the specified JSON file. More...
 
static void LoadJson (string filePath, ref NeuralTrainingParameters trainingParametersRestored)
 Restores (deserializes) a training parameters object from the specified file in JSON format. More...
 
static void SaveJson (NeuralTrainingParameters[] trainingParameters, string filePath)
 Saves (serializes) the specified array of training parameters objects to the specified JSON file. File is owerwritten if it exists. More...
 
static void SaveJson (NeuralTrainingParameters[] trainingParameters, string filePath, bool append)
 Saves (serializes) the specified array of training parameters objects to the specified JSON file. More...
 
static void LoadJson (string filePath, ref NeuralTrainingParameters[] trainingParametersRestored)
 Restores (deserializes) an array of training parameters objects from the specified file in JSON format. More...
 
static void SaveJson (List< NeuralTrainingParameters > trainingParameters, string filePath)
 Saves (serializes) the specified list of training parameters objects to the specified JSON file. File is owerwritten if it exists. More...
 
static void SaveJson (List< NeuralTrainingParameters > trainingParameters, string filePath, bool append)
 Saves (serializes) the specified list of training parameters objects to the specified JSON file. More...
 
static void LoadJson (string filePath, ref List< NeuralTrainingParameters > trainingParametersRestored)
 Restores (deserializes) a list of training parameters objects from the specified file in JSON format. More...
 
static void SaveCSV (List< NeuralTrainingParameters > trainingParameters, string filePath)
 Saves the specified list of training parameters objects to the specified CSV file. More...
 
static ComparerTrainingTime CreateComparerTrainingTime ()
 

Public Attributes

List< IVector_errorsTrainingRmsList = null
 
List< IVector_errorsTrainingMaxList = null
 
List< IVector_errorsVerificationRmsList = null
 
List< IVector_errorsVerificationMaxList = null
 
bool _convergenceRmsEnabled = false
 

Static Public Attributes

static double DefaultLearningRate = 0.1
 Default value for learning rate in neural networks. More...
 
static double DefaultMomentum = 0.5
 Default value of momentum for neural networks. More...
 
static double DefaultSigmoidAlphaValue = 1.5
 Default value of the sigmoid alpha value (used in networks with sigmoid activation functions). More...
 
static int DefaultEpochsInBundle
 Default value for number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between). More...
 
static int DefaultNumHiddenLayers = 1
 Default number of hidden layers. More...
 
static int DefaultNumHiddenNeurons = 20
 Default number of hidden neurons in a layer More...
 
static int DefaultMaxEpochs = 40000
 Default value for maximal number of epochs. More...
 
static IVector DefaultToleranceRms = null
 Default value for tollerance on RMS error in neural networks. More...
 
static IVector DefaultToleranceMax = null
 Default value for tollerance on max. abs. error in neural networks. More...
 
static double DefaultToleranceRmsRelativeToRangeScalar = 0.1
 Default value for the tolerance on RMS error, relative to the output range. More...
 
static double DefaultToleranceMaxRelativeToRangeScalar = 0
 Default value for the tolerance on max. abs. error, relative to the output range. More...
 
static int DefaultInputLength = 1
 Default number of input neurons. More...
 
static int DefaultOutputLength = 1
 Default number of output neurons. More...
 
static double DefaultInputBoundSafetyFactor = 1.5
 Default number of input safety factor. More...
 
static double DefaultOutputBoundSafetyFactor = 1.5
 Default number of output safety factor. More...
 

Protected Member Functions

IComparer< IVectorCreateComparerErrorTrainingRmsVector ()
 

Static Protected Member Functions

static double ErrorAverageCalc (List< IVector > ErrorConvergence, int NumLastErrors, int NumBundles, IVector scalingLength)
 Calculate average number of the desired number of first elements in the convergence list. More...
 
static double ErrorAverageCalc (List< IVector > ErrorConvergence, int NumLastErrors, int NumBundles)
 Calculate average number of the desired number of first elements in the convergence list. More...
 

Protected Attributes

double _learningRate = DefaultLearningRate
 
double _momentum = DefaultMomentum
 
double _sigmoidAlphaValue = DefaultSigmoidAlphaValue
 
int _maxEpochs = DefaultMaxEpochs
 
int _epochInBundle = DefaultEpochsInBundle
 
IVector _outputRange
 
IBoundingBox _outputNeuronRange
 
IVector _inputRange
 
IBoundingBox _inputNeuronRange
 
IVector _toleranceRms
 
IVector _toleranceMax
 
int _numHiddenLayers = DefaultNumHiddenLayers
 
int[] _numHiddenNeurons = null
 
bool _isNetworkTrained = false
 
IVector _errorsTrainingRms
 
IVector _errorsTrainingMax
 
IVector _errorsTrainingMeanAbs
 
IVector _errorsVerificationRms
 
IVector _errorsVerificationMax
 
IVector _errorsVerificationMeanAbs
 
int _numEpochs = 0
 
double _trainingTime = 0
 
double _trainingCpuTime = 0
 
List< int > _EpochNumbers
 
List< double > _EpochErrorsRms
 
List< double > _EpochErrorsAbs
 

Properties

double LearningRate [get, set]
 Learning rate. More...
 
double Momentum [get, set]
 Momentum. Specifies how much changes of weight in the previous iterations affect changes in the current iterations. More...
 
double SigmoidAlphaValue [get, set]
 Sigmoid alpha value (used in networks with sigmoid activation functions). More...
 
virtual int InputLength [get, set]
 Gets or sets the number of input neurons. More...
 
virtual int OutputLength [get, set]
 Gets or sets the number of output neurons. More...
 
virtual double InputBoundSafetyFactor [get, set]
 Gets or sets input safety factor. More...
 
virtual double OutputBoundSafetyFactor [get, set]
 Gets or sets output safety factor. More...
 
int MaxEpochs [get, set]
 Maximal number of epochs performed in the training procedure. More...
 
int EpochsInBundle [get, set]
 Number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between). More...
 
IVector OutputRange [get, set]
 Range from actual outputs. More...
 
IBoundingBox OutputNeuronRange [get, set]
 Bounding box from actual outputs. More...
 
IVector InputRange [get, set]
 Range from actual inputs. More...
 
IBoundingBox InputNeuronRange [get, set]
 Bounding box from actual inputs. More...
 
IVector ToleranceRms [get, set]
 Tolerance over RMS error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More...
 
IVector ToleranceMax [get, set]
 Tolerance on maximal error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More...
 
IVector ToleranceRmsRelativeToRange [get, set]
 Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceRmsRelativeToRangeScalar [get, set]
 Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value. More...
 
IVector ToleranceMaxRelativeToRange [get, set]
 Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceMaxRelativeToRangeScalar [get, set]
 Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value. More...
 
int NumHiddenLayers [get, set]
 Number of Hideden layers. More...
 
int[] NumHidenNeurons [get, set]
 Numbers of neurons in each hidden layer. More...
 
bool IsNetworkTrained [get, set]
 Whether the network is trained (and results exist). More...
 
IVector ErrorsTrainingRms [get, set]
 RMS errors calculated on training data. More...
 
List< IVectorErrorsTrainingRmsList [get, set]
 Convergence List of Rms errors calculated on training data. More...
 
IVector ErrorsTrainingMax [get, set]
 Maximal errors calculated on training data. More...
 
List< IVectorErrorsTrainingMaxList [get, set]
 Convergence List of Maximal errors calculated on training data. More...
 
IVector ErrorsTrainingMeanAbs [get, set]
 Mean absolute errors calculated on training data. More...
 
IVector ErrorsVerificationRms [get, set]
 RMS errors calculated on verification data. More...
 
List< IVectorErrorsVerificationRmsList [get, set]
 Convergence List of RMS errors calculated on verification data. More...
 
IVector ErrorsVerificationMax [get, set]
 Maximal errors calculated on verification data. More...
 
List< IVectorErrorsVerificationMaxList [get, set]
 Convergence List of Maximal errors calculated on verification data. More...
 
IVector ErrorsVerificationMeanAbs [get, set]
 Maximal errors calculated on training data. More...
 
bool SaveConvergenceRms [get, set]
 
int NumEpochs [get, set]
 Number of epochs actually spent at training. More...
 
double TrainingTime [get, set]
 Time spent for training. More...
 
double TrainingCpuTime [get, set]
 CPU time spent for training. More...
 
List< int > EpochNumbers [get, protected set]
 List of epoch numbers at which convergence data was sampled. More...
 
List< double > EpochErrorsRms [get, set]
 List of sampled RMS errors corresponding to epoch numbers from EpochNumbers. More...
 
List< double > EpochErrorsAbs [get, set]
 List of sampled absolute errors corresponding to epoch numbers from EpochNumbers. More...
 

Private Attributes

int _inputLength = DefaultInputLength
 
int _outputLength = DefaultOutputLength
 
double _inputBoundSafetyFactor = DefaultInputBoundSafetyFactor
 Gets or sets input safety factor. More...
 
double _outputBoundSafetyFactor = DefaultOutputBoundSafetyFactor
 Gets or sets output safety factor. More...
 
IVector _tolRmsRelative
 Auxiliary properties for defining tolerances in a relative way: More...
 
double _tolRmsRelativeScalar = DefaultToleranceRmsRelativeToRangeScalar
 
IVector _tolMaxRelative
 
double _tolMaxRelativeScalar = DefaultToleranceMaxRelativeToRangeScalar
 

Detailed Description

Contains Parameters that define neural network architecture and trainig procedure, together with achieved results after training such as various error norms.

Not thread safe!

This class is used for storing parameters of neural networks and restoring them at a later time, in order to repeat training under similar condition or simply to analyse performance of neural networks.

$A Igor Jul10 May12;

Member Function Documentation

void IG.Num.NeuralTrainingParameters.SetEpochNumbers ( int[]  epochNumbers)
inline

Sets the list of epoch numbers at which convergence data was sampled.

Parameters
epochNumbersArray of epoch numbers from which data is copied.
void IG.Num.NeuralTrainingParameters.SetEpochNumbers ( List< int >  epochNumbers)
inline

Sets the list of epoch numbers at which convergence data was sampled.

Parameters
epochNumbersList of epoch numbers from which data is copied.
void IG.Num.NeuralTrainingParameters.SetEpochErrorsRms ( double[]  errors)
inline

Sets the list of sampled RMS errors that correspond to epoch numbers from EpochNumbers.

Parameters
errorsArray from which data is copied.
void IG.Num.NeuralTrainingParameters.SetEpochErrorsRms ( List< double >  errors)
inline

Sets the list of sampled RMS errors corresponding to epoch numbers from EpochNumbers.

Parameters
errorsList from which data is copied.
void IG.Num.NeuralTrainingParameters.SetEpochErrorsAbs ( double[]  errors)
inline

Sets the list of sampled absolute errors that correspond to epoch numbers from EpochNumbers.

Parameters
errorsArray from which data is copied.
void IG.Num.NeuralTrainingParameters.SetEpochErrorsAbs ( List< double >  errors)
inline

Sets the list of sampled absolute errors corresponding to epoch numbers from EpochNumbers.

Parameters
errorsList from which data is copied.
static void IG.Num.NeuralTrainingParameters.SaveJson ( NeuralTrainingParameters  trainingParameters,
string  filePath 
)
inlinestatic

Saves (serializes) the specified training parameters object to the specified JSON file. File is owerwritten if it exists.

Parameters
trainingParametersObject that is saved to a file.
filePathPath to the file into which object is is saved.
static void IG.Num.NeuralTrainingParameters.SaveJson ( NeuralTrainingParameters  trainingParameters,
string  filePath,
bool  append 
)
inlinestatic

Saves (serializes) the specified training parameters object to the specified JSON file.

Parameters
trainingParametersObject that is saved to a file.
filePathPath to the file into which object is is saved.
appendSpecifies whether serialized data is appended at the end of the file in the case that the file already exists.
static void IG.Num.NeuralTrainingParameters.LoadJson ( string  filePath,
ref NeuralTrainingParameters  trainingParametersRestored 
)
inlinestatic

Restores (deserializes) a training parameters object from the specified file in JSON format.

Parameters
filePathFile from which object data is restored.
trainingParametersRestoredObject that is restored by deserialization.
static void IG.Num.NeuralTrainingParameters.SaveJson ( NeuralTrainingParameters[]  trainingParameters,
string  filePath 
)
inlinestatic

Saves (serializes) the specified array of training parameters objects to the specified JSON file. File is owerwritten if it exists.

Parameters
trainingParametersArray that is saved to a file.
filePathPath to the file into which object is is saved.
static void IG.Num.NeuralTrainingParameters.SaveJson ( NeuralTrainingParameters[]  trainingParameters,
string  filePath,
bool  append 
)
inlinestatic

Saves (serializes) the specified array of training parameters objects to the specified JSON file.

Parameters
trainingParametersArray that is saved to a file.
filePathPath to the file into which object is is saved.
appendSpecifies whether serialized data is appended at the end of the file in the case that the file already exists.
static void IG.Num.NeuralTrainingParameters.LoadJson ( string  filePath,
ref NeuralTrainingParameters[]  trainingParametersRestored 
)
inlinestatic

Restores (deserializes) an array of training parameters objects from the specified file in JSON format.

Parameters
filePathFile from which array of objects is restored.
trainingParametersRestoredArray of objects that is restored by deserialization.
static void IG.Num.NeuralTrainingParameters.SaveJson ( List< NeuralTrainingParameters trainingParameters,
string  filePath 
)
inlinestatic

Saves (serializes) the specified list of training parameters objects to the specified JSON file. File is owerwritten if it exists.

Parameters
trainingParametersList that is saved to a file.
filePathPath to the file into which object is is saved.
static void IG.Num.NeuralTrainingParameters.SaveJson ( List< NeuralTrainingParameters trainingParameters,
string  filePath,
bool  append 
)
inlinestatic

Saves (serializes) the specified list of training parameters objects to the specified JSON file.

Parameters
trainingParametersList that is saved to a file.
filePathPath to the file into which object is is saved.
appendSpecifies whether serialized data is appended at the end of the file in the case that the file already exists.
static void IG.Num.NeuralTrainingParameters.LoadJson ( string  filePath,
ref List< NeuralTrainingParameters trainingParametersRestored 
)
inlinestatic

Restores (deserializes) a list of training parameters objects from the specified file in JSON format.

Parameters
filePathFile from which list of objects is restored.
trainingParametersRestoredArray of objects that is restored by deserialization.
static void IG.Num.NeuralTrainingParameters.SaveCSV ( List< NeuralTrainingParameters trainingParameters,
string  filePath 
)
inlinestatic

Saves the specified list of training parameters objects to the specified CSV file.

Parameters
trainingParametersList that is saved to a file.
filePathPath to the file into which object is is saved.

$A Tako78 Sep12;

static double IG.Num.NeuralTrainingParameters.ErrorAverageCalc ( List< IVector ErrorConvergence,
int  NumLastErrors,
int  NumBundles,
IVector  scalingLength 
)
inlinestaticprotected

Calculate average number of the desired number of first elements in the convergence list.

Parameters
ErrorConvergenceList of convergence errors.
NumLastErrorsNumber of elemnts in the convergence list.
NumBundlesNumber of epoch bundles.
scalingLengthScaling length.
Returns
Average number.

References IG.Num.VectorBase.NormWeighted().

static double IG.Num.NeuralTrainingParameters.ErrorAverageCalc ( List< IVector ErrorConvergence,
int  NumLastErrors,
int  NumBundles 
)
inlinestaticprotected

Calculate average number of the desired number of first elements in the convergence list.

Parameters
ErrorConvergenceList of convergence errors.
NumLastErrorsNumber of elemnts in the convergence list.
NumBundlesNumber of bundles.
Returns
Average number.
IComparer<IVector> IG.Num.NeuralTrainingParameters.CreateComparerErrorTrainingRmsVector ( )
inlineprotected
static ComparerTrainingTime IG.Num.NeuralTrainingParameters.CreateComparerTrainingTime ( )
inlinestatic

Member Data Documentation

double IG.Num.NeuralTrainingParameters.DefaultLearningRate = 0.1
static

Default value for learning rate in neural networks.

double IG.Num.NeuralTrainingParameters.DefaultMomentum = 0.5
static

Default value of momentum for neural networks.

double IG.Num.NeuralTrainingParameters.DefaultSigmoidAlphaValue = 1.5
static

Default value of the sigmoid alpha value (used in networks with sigmoid activation functions).

int IG.Num.NeuralTrainingParameters.DefaultEpochsInBundle
static

Default value for number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between).

int IG.Num.NeuralTrainingParameters.DefaultNumHiddenLayers = 1
static

Default number of hidden layers.

int IG.Num.NeuralTrainingParameters.DefaultNumHiddenNeurons = 20
static

Default number of hidden neurons in a layer

int IG.Num.NeuralTrainingParameters.DefaultMaxEpochs = 40000
static

Default value for maximal number of epochs.

IVector IG.Num.NeuralTrainingParameters.DefaultToleranceRms = null
static

Default value for tollerance on RMS error in neural networks.

IVector IG.Num.NeuralTrainingParameters.DefaultToleranceMax = null
static

Default value for tollerance on max. abs. error in neural networks.

double IG.Num.NeuralTrainingParameters.DefaultToleranceRmsRelativeToRangeScalar = 0.1
static

Default value for the tolerance on RMS error, relative to the output range.

double IG.Num.NeuralTrainingParameters.DefaultToleranceMaxRelativeToRangeScalar = 0
static

Default value for the tolerance on max. abs. error, relative to the output range.

int IG.Num.NeuralTrainingParameters.DefaultInputLength = 1
static

Default number of input neurons.

int IG.Num.NeuralTrainingParameters.DefaultOutputLength = 1
static

Default number of output neurons.

double IG.Num.NeuralTrainingParameters.DefaultInputBoundSafetyFactor = 1.5
static

Default number of input safety factor.

double IG.Num.NeuralTrainingParameters.DefaultOutputBoundSafetyFactor = 1.5
static

Default number of output safety factor.

double IG.Num.NeuralTrainingParameters._learningRate = DefaultLearningRate
protected
double IG.Num.NeuralTrainingParameters._momentum = DefaultMomentum
protected
double IG.Num.NeuralTrainingParameters._sigmoidAlphaValue = DefaultSigmoidAlphaValue
protected
int IG.Num.NeuralTrainingParameters._inputLength = DefaultInputLength
private
int IG.Num.NeuralTrainingParameters._outputLength = DefaultOutputLength
private
double IG.Num.NeuralTrainingParameters._inputBoundSafetyFactor = DefaultInputBoundSafetyFactor
private

Gets or sets input safety factor.

double IG.Num.NeuralTrainingParameters._outputBoundSafetyFactor = DefaultOutputBoundSafetyFactor
private

Gets or sets output safety factor.

int IG.Num.NeuralTrainingParameters._maxEpochs = DefaultMaxEpochs
protected
int IG.Num.NeuralTrainingParameters._epochInBundle = DefaultEpochsInBundle
protected
IVector IG.Num.NeuralTrainingParameters._outputRange
protected
IBoundingBox IG.Num.NeuralTrainingParameters._outputNeuronRange
protected
IVector IG.Num.NeuralTrainingParameters._inputRange
protected
IBoundingBox IG.Num.NeuralTrainingParameters._inputNeuronRange
protected
IVector IG.Num.NeuralTrainingParameters._toleranceRms
protected
IVector IG.Num.NeuralTrainingParameters._toleranceMax
protected
IVector IG.Num.NeuralTrainingParameters._tolRmsRelative
private

Auxiliary properties for defining tolerances in a relative way:

double IG.Num.NeuralTrainingParameters._tolRmsRelativeScalar = DefaultToleranceRmsRelativeToRangeScalar
private
IVector IG.Num.NeuralTrainingParameters._tolMaxRelative
private
double IG.Num.NeuralTrainingParameters._tolMaxRelativeScalar = DefaultToleranceMaxRelativeToRangeScalar
private
int IG.Num.NeuralTrainingParameters._numHiddenLayers = DefaultNumHiddenLayers
protected
int [] IG.Num.NeuralTrainingParameters._numHiddenNeurons = null
protected
bool IG.Num.NeuralTrainingParameters._isNetworkTrained = false
protected
IVector IG.Num.NeuralTrainingParameters._errorsTrainingRms
protected
List<IVector> IG.Num.NeuralTrainingParameters._errorsTrainingRmsList = null
IVector IG.Num.NeuralTrainingParameters._errorsTrainingMax
protected
List<IVector> IG.Num.NeuralTrainingParameters._errorsTrainingMaxList = null
IVector IG.Num.NeuralTrainingParameters._errorsTrainingMeanAbs
protected
IVector IG.Num.NeuralTrainingParameters._errorsVerificationRms
protected
List<IVector> IG.Num.NeuralTrainingParameters._errorsVerificationRmsList = null
IVector IG.Num.NeuralTrainingParameters._errorsVerificationMax
protected
List<IVector> IG.Num.NeuralTrainingParameters._errorsVerificationMaxList = null
IVector IG.Num.NeuralTrainingParameters._errorsVerificationMeanAbs
protected
bool IG.Num.NeuralTrainingParameters._convergenceRmsEnabled = false
int IG.Num.NeuralTrainingParameters._numEpochs = 0
protected
double IG.Num.NeuralTrainingParameters._trainingTime = 0
protected
double IG.Num.NeuralTrainingParameters._trainingCpuTime = 0
protected
List<int> IG.Num.NeuralTrainingParameters._EpochNumbers
protected
List<double> IG.Num.NeuralTrainingParameters._EpochErrorsRms
protected
List<double> IG.Num.NeuralTrainingParameters._EpochErrorsAbs
protected

Property Documentation

double IG.Num.NeuralTrainingParameters.Momentum
getset

Momentum. Specifies how much changes of weight in the previous iterations affect changes in the current iterations.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

double IG.Num.NeuralTrainingParameters.SigmoidAlphaValue
getset

Sigmoid alpha value (used in networks with sigmoid activation functions).

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

virtual int IG.Num.NeuralTrainingParameters.InputLength
getset
virtual int IG.Num.NeuralTrainingParameters.OutputLength
getset
virtual double IG.Num.NeuralTrainingParameters.InputBoundSafetyFactor
getset
virtual double IG.Num.NeuralTrainingParameters.OutputBoundSafetyFactor
getset
int IG.Num.NeuralTrainingParameters.MaxEpochs
getset

Maximal number of epochs performed in the training procedure.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

int IG.Num.NeuralTrainingParameters.EpochsInBundle
getset

Number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between).

This parameter does not affect the training procedure in terms of results.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

IVector IG.Num.NeuralTrainingParameters.OutputRange
getset

Range from actual outputs.

$A Tako78 Octl12;

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IBoundingBox IG.Num.NeuralTrainingParameters.OutputNeuronRange
getsetprotected

Bounding box from actual outputs.

$A Tako78 Octl12;

IVector IG.Num.NeuralTrainingParameters.InputRange
getset

Range from actual inputs.

$A Tako78 Octl12;

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IBoundingBox IG.Num.NeuralTrainingParameters.InputNeuronRange
getsetprotected

Bounding box from actual inputs.

$A Tako78 Octl12;

IVector IG.Num.NeuralTrainingParameters.ToleranceRms
getset

Tolerance over RMS error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

IVector IG.Num.NeuralTrainingParameters.ToleranceMax
getset

Tolerance on maximal error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

IVector IG.Num.NeuralTrainingParameters.ToleranceRmsRelativeToRange
getset

Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRange

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

double IG.Num.NeuralTrainingParameters.ToleranceRmsRelativeToRangeScalar
getset

Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRangeScalar

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

IVector IG.Num.NeuralTrainingParameters.ToleranceMaxRelativeToRange
getset

Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRange

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

double IG.Num.NeuralTrainingParameters.ToleranceMaxRelativeToRangeScalar
getset

Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRangeScalar

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().

int IG.Num.NeuralTrainingParameters.NumHiddenLayers
getset
int [] IG.Num.NeuralTrainingParameters.NumHidenNeurons
getset
bool IG.Num.NeuralTrainingParameters.IsNetworkTrained
getset

Whether the network is trained (and results exist).

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingParameters.ErrorsTrainingRms
getset

RMS errors calculated on training data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

List<IVector> IG.Num.NeuralTrainingParameters.ErrorsTrainingRmsList
getset

Convergence List of Rms errors calculated on training data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingParameters.ErrorsTrainingMax
getset

Maximal errors calculated on training data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

List<IVector> IG.Num.NeuralTrainingParameters.ErrorsTrainingMaxList
getset

Convergence List of Maximal errors calculated on training data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingParameters.ErrorsTrainingMeanAbs
getset

Mean absolute errors calculated on training data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingParameters.ErrorsVerificationRms
getset

RMS errors calculated on verification data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

List<IVector> IG.Num.NeuralTrainingParameters.ErrorsVerificationRmsList
getset

Convergence List of RMS errors calculated on verification data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingParameters.ErrorsVerificationMax
getset

Maximal errors calculated on verification data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

List<IVector> IG.Num.NeuralTrainingParameters.ErrorsVerificationMaxList
getset

Convergence List of Maximal errors calculated on verification data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingParameters.ErrorsVerificationMeanAbs
getset

Maximal errors calculated on training data.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

bool IG.Num.NeuralTrainingParameters.SaveConvergenceRms
getset
int IG.Num.NeuralTrainingParameters.NumEpochs
getset

Number of epochs actually spent at training.

This may be less than MaxEpochs if convergence is reached before.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

double IG.Num.NeuralTrainingParameters.TrainingTime
getset

Time spent for training.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

double IG.Num.NeuralTrainingParameters.TrainingCpuTime
getset

CPU time spent for training.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

List<int> IG.Num.NeuralTrainingParameters.EpochNumbers
getprotected set

List of epoch numbers at which convergence data was sampled.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

List<double> IG.Num.NeuralTrainingParameters.EpochErrorsRms
getset

List of sampled RMS errors corresponding to epoch numbers from EpochNumbers.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().

List<double> IG.Num.NeuralTrainingParameters.EpochErrorsAbs
getset

List of sampled absolute errors corresponding to epoch numbers from EpochNumbers.

Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().


The documentation for this class was generated from the following file: