IGLib
1.7.2
The IGLib base library for development of numerical, technical and business applications.
|
Contains Parameters that define neural network architecture and trainig procedure, together with achieved results after training such as various error norms. More...
Classes | |
class | ComparerBase |
Base comparer class (implementation of the IComparer{NeuralTrainingParameters} interface) for conmparing objects of type NeuralTrainingParameters More... | |
class | ComparerErrorTrainingVector |
class | ComparerTrainingTime |
Public Member Functions | |
void | SetEpochNumbers (int[] epochNumbers) |
Sets the list of epoch numbers at which convergence data was sampled. More... | |
void | SetEpochNumbers (List< int > epochNumbers) |
Sets the list of epoch numbers at which convergence data was sampled. More... | |
void | SetEpochErrorsRms (double[] errors) |
Sets the list of sampled RMS errors that correspond to epoch numbers from EpochNumbers. More... | |
void | SetEpochErrorsRms (List< double > errors) |
Sets the list of sampled RMS errors corresponding to epoch numbers from EpochNumbers. More... | |
void | SetEpochErrorsAbs (double[] errors) |
Sets the list of sampled absolute errors that correspond to epoch numbers from EpochNumbers. More... | |
void | SetEpochErrorsAbs (List< double > errors) |
Sets the list of sampled absolute errors corresponding to epoch numbers from EpochNumbers. More... | |
void | CopyFrom (NeuralApproximatorBase nn) |
Copies current data from the specified neural network approximator. More... | |
void | CopyResultsFrom (NeuralApproximatorBase nn) |
Copies only results from the trained network to the current object. More... | |
void | CopyTo (NeuralApproximatorBase nn) |
Copies data that determine neural network and training procedure (such as network architecture, training parameters, tolerances, etc.) from the current object to the specified neural network approximator. This enables to restore training contitions of a peviour training procedure. More... | |
Static Public Member Functions | |
static void | SaveJson (NeuralTrainingParameters trainingParameters, string filePath) |
Saves (serializes) the specified training parameters object to the specified JSON file. File is owerwritten if it exists. More... | |
static void | SaveJson (NeuralTrainingParameters trainingParameters, string filePath, bool append) |
Saves (serializes) the specified training parameters object to the specified JSON file. More... | |
static void | LoadJson (string filePath, ref NeuralTrainingParameters trainingParametersRestored) |
Restores (deserializes) a training parameters object from the specified file in JSON format. More... | |
static void | SaveJson (NeuralTrainingParameters[] trainingParameters, string filePath) |
Saves (serializes) the specified array of training parameters objects to the specified JSON file. File is owerwritten if it exists. More... | |
static void | SaveJson (NeuralTrainingParameters[] trainingParameters, string filePath, bool append) |
Saves (serializes) the specified array of training parameters objects to the specified JSON file. More... | |
static void | LoadJson (string filePath, ref NeuralTrainingParameters[] trainingParametersRestored) |
Restores (deserializes) an array of training parameters objects from the specified file in JSON format. More... | |
static void | SaveJson (List< NeuralTrainingParameters > trainingParameters, string filePath) |
Saves (serializes) the specified list of training parameters objects to the specified JSON file. File is owerwritten if it exists. More... | |
static void | SaveJson (List< NeuralTrainingParameters > trainingParameters, string filePath, bool append) |
Saves (serializes) the specified list of training parameters objects to the specified JSON file. More... | |
static void | LoadJson (string filePath, ref List< NeuralTrainingParameters > trainingParametersRestored) |
Restores (deserializes) a list of training parameters objects from the specified file in JSON format. More... | |
static void | SaveCSV (List< NeuralTrainingParameters > trainingParameters, string filePath) |
Saves the specified list of training parameters objects to the specified CSV file. More... | |
static ComparerTrainingTime | CreateComparerTrainingTime () |
Public Attributes | |
List< IVector > | _errorsTrainingRmsList = null |
List< IVector > | _errorsTrainingMaxList = null |
List< IVector > | _errorsVerificationRmsList = null |
List< IVector > | _errorsVerificationMaxList = null |
bool | _convergenceRmsEnabled = false |
Static Public Attributes | |
static double | DefaultLearningRate = 0.1 |
Default value for learning rate in neural networks. More... | |
static double | DefaultMomentum = 0.5 |
Default value of momentum for neural networks. More... | |
static double | DefaultSigmoidAlphaValue = 1.5 |
Default value of the sigmoid alpha value (used in networks with sigmoid activation functions). More... | |
static int | DefaultEpochsInBundle |
Default value for number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between). More... | |
static int | DefaultNumHiddenLayers = 1 |
Default number of hidden layers. More... | |
static int | DefaultNumHiddenNeurons = 20 |
Default number of hidden neurons in a layer More... | |
static int | DefaultMaxEpochs = 40000 |
Default value for maximal number of epochs. More... | |
static IVector | DefaultToleranceRms = null |
Default value for tollerance on RMS error in neural networks. More... | |
static IVector | DefaultToleranceMax = null |
Default value for tollerance on max. abs. error in neural networks. More... | |
static double | DefaultToleranceRmsRelativeToRangeScalar = 0.1 |
Default value for the tolerance on RMS error, relative to the output range. More... | |
static double | DefaultToleranceMaxRelativeToRangeScalar = 0 |
Default value for the tolerance on max. abs. error, relative to the output range. More... | |
static int | DefaultInputLength = 1 |
Default number of input neurons. More... | |
static int | DefaultOutputLength = 1 |
Default number of output neurons. More... | |
static double | DefaultInputBoundSafetyFactor = 1.5 |
Default number of input safety factor. More... | |
static double | DefaultOutputBoundSafetyFactor = 1.5 |
Default number of output safety factor. More... | |
Protected Member Functions | |
IComparer< IVector > | CreateComparerErrorTrainingRmsVector () |
Static Protected Member Functions | |
static double | ErrorAverageCalc (List< IVector > ErrorConvergence, int NumLastErrors, int NumBundles, IVector scalingLength) |
Calculate average number of the desired number of first elements in the convergence list. More... | |
static double | ErrorAverageCalc (List< IVector > ErrorConvergence, int NumLastErrors, int NumBundles) |
Calculate average number of the desired number of first elements in the convergence list. More... | |
Protected Attributes | |
double | _learningRate = DefaultLearningRate |
double | _momentum = DefaultMomentum |
double | _sigmoidAlphaValue = DefaultSigmoidAlphaValue |
int | _maxEpochs = DefaultMaxEpochs |
int | _epochInBundle = DefaultEpochsInBundle |
IVector | _outputRange |
IBoundingBox | _outputNeuronRange |
IVector | _inputRange |
IBoundingBox | _inputNeuronRange |
IVector | _toleranceRms |
IVector | _toleranceMax |
int | _numHiddenLayers = DefaultNumHiddenLayers |
int[] | _numHiddenNeurons = null |
bool | _isNetworkTrained = false |
IVector | _errorsTrainingRms |
IVector | _errorsTrainingMax |
IVector | _errorsTrainingMeanAbs |
IVector | _errorsVerificationRms |
IVector | _errorsVerificationMax |
IVector | _errorsVerificationMeanAbs |
int | _numEpochs = 0 |
double | _trainingTime = 0 |
double | _trainingCpuTime = 0 |
List< int > | _EpochNumbers |
List< double > | _EpochErrorsRms |
List< double > | _EpochErrorsAbs |
Properties | |
double | LearningRate [get, set] |
Learning rate. More... | |
double | Momentum [get, set] |
Momentum. Specifies how much changes of weight in the previous iterations affect changes in the current iterations. More... | |
double | SigmoidAlphaValue [get, set] |
Sigmoid alpha value (used in networks with sigmoid activation functions). More... | |
virtual int | InputLength [get, set] |
Gets or sets the number of input neurons. More... | |
virtual int | OutputLength [get, set] |
Gets or sets the number of output neurons. More... | |
virtual double | InputBoundSafetyFactor [get, set] |
Gets or sets input safety factor. More... | |
virtual double | OutputBoundSafetyFactor [get, set] |
Gets or sets output safety factor. More... | |
int | MaxEpochs [get, set] |
Maximal number of epochs performed in the training procedure. More... | |
int | EpochsInBundle [get, set] |
Number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between). More... | |
IVector | OutputRange [get, set] |
Range from actual outputs. More... | |
IBoundingBox | OutputNeuronRange [get, set] |
Bounding box from actual outputs. More... | |
IVector | InputRange [get, set] |
Range from actual inputs. More... | |
IBoundingBox | InputNeuronRange [get, set] |
Bounding box from actual inputs. More... | |
IVector | ToleranceRms [get, set] |
Tolerance over RMS error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More... | |
IVector | ToleranceMax [get, set] |
Tolerance on maximal error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More... | |
IVector | ToleranceRmsRelativeToRange [get, set] |
Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data. More... | |
double | ToleranceRmsRelativeToRangeScalar [get, set] |
Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value. More... | |
IVector | ToleranceMaxRelativeToRange [get, set] |
Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data. More... | |
double | ToleranceMaxRelativeToRangeScalar [get, set] |
Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value. More... | |
int | NumHiddenLayers [get, set] |
Number of Hideden layers. More... | |
int[] | NumHidenNeurons [get, set] |
Numbers of neurons in each hidden layer. More... | |
bool | IsNetworkTrained [get, set] |
Whether the network is trained (and results exist). More... | |
IVector | ErrorsTrainingRms [get, set] |
RMS errors calculated on training data. More... | |
List< IVector > | ErrorsTrainingRmsList [get, set] |
Convergence List of Rms errors calculated on training data. More... | |
IVector | ErrorsTrainingMax [get, set] |
Maximal errors calculated on training data. More... | |
List< IVector > | ErrorsTrainingMaxList [get, set] |
Convergence List of Maximal errors calculated on training data. More... | |
IVector | ErrorsTrainingMeanAbs [get, set] |
Mean absolute errors calculated on training data. More... | |
IVector | ErrorsVerificationRms [get, set] |
RMS errors calculated on verification data. More... | |
List< IVector > | ErrorsVerificationRmsList [get, set] |
Convergence List of RMS errors calculated on verification data. More... | |
IVector | ErrorsVerificationMax [get, set] |
Maximal errors calculated on verification data. More... | |
List< IVector > | ErrorsVerificationMaxList [get, set] |
Convergence List of Maximal errors calculated on verification data. More... | |
IVector | ErrorsVerificationMeanAbs [get, set] |
Maximal errors calculated on training data. More... | |
bool | SaveConvergenceRms [get, set] |
int | NumEpochs [get, set] |
Number of epochs actually spent at training. More... | |
double | TrainingTime [get, set] |
Time spent for training. More... | |
double | TrainingCpuTime [get, set] |
CPU time spent for training. More... | |
List< int > | EpochNumbers [get, protected set] |
List of epoch numbers at which convergence data was sampled. More... | |
List< double > | EpochErrorsRms [get, set] |
List of sampled RMS errors corresponding to epoch numbers from EpochNumbers. More... | |
List< double > | EpochErrorsAbs [get, set] |
List of sampled absolute errors corresponding to epoch numbers from EpochNumbers. More... | |
Private Attributes | |
int | _inputLength = DefaultInputLength |
int | _outputLength = DefaultOutputLength |
double | _inputBoundSafetyFactor = DefaultInputBoundSafetyFactor |
Gets or sets input safety factor. More... | |
double | _outputBoundSafetyFactor = DefaultOutputBoundSafetyFactor |
Gets or sets output safety factor. More... | |
IVector | _tolRmsRelative |
Auxiliary properties for defining tolerances in a relative way: More... | |
double | _tolRmsRelativeScalar = DefaultToleranceRmsRelativeToRangeScalar |
IVector | _tolMaxRelative |
double | _tolMaxRelativeScalar = DefaultToleranceMaxRelativeToRangeScalar |
Contains Parameters that define neural network architecture and trainig procedure, together with achieved results after training such as various error norms.
Not thread safe!
This class is used for storing parameters of neural networks and restoring them at a later time, in order to repeat training under similar condition or simply to analyse performance of neural networks.
$A Igor Jul10 May12;
|
inline |
Sets the list of epoch numbers at which convergence data was sampled.
epochNumbers | Array of epoch numbers from which data is copied. |
|
inline |
Sets the list of epoch numbers at which convergence data was sampled.
epochNumbers | List of epoch numbers from which data is copied. |
|
inline |
Sets the list of sampled RMS errors that correspond to epoch numbers from EpochNumbers.
errors | Array from which data is copied. |
|
inline |
Sets the list of sampled RMS errors corresponding to epoch numbers from EpochNumbers.
errors | List from which data is copied. |
|
inline |
Sets the list of sampled absolute errors that correspond to epoch numbers from EpochNumbers.
errors | Array from which data is copied. |
|
inline |
Sets the list of sampled absolute errors corresponding to epoch numbers from EpochNumbers.
errors | List from which data is copied. |
|
inline |
Copies current data from the specified neural network approximator.
nn | Neural network approximator that data is copied form. |
References IG.Num.VectorBase.Copy(), IG.Num.NeuralApproximatorBase.EpochsInBundle, IG.Num.SampledDataSet.GetInputRange(), IG.Num.SampledDataSet.GetOutputRange(), IG.Num.NeuralApproximatorBase.InputBoundsSafetyFactor, IG.Num.NeuralApproximatorBase.InputLength, IG.Num.NeuralApproximatorBase.LearningRate, IG.Num.NeuralApproximatorBase.MaxEpochs, IG.Num.NeuralApproximatorBase.Momentum, IG.Num.NeuralApproximatorBase.NumHiddenLayers, IG.Num.NeuralApproximatorBase.NumHiddenNeurons, IG.Num.NeuralApproximatorBase.OutputBoundsSafetyFactor, IG.Num.NeuralApproximatorBase.OutputLength, IG.Num.NeuralApproximatorBase.SigmoidAlphaValue, IG.Num.NeuralApproximatorBase.ToleranceMax, IG.Num.NeuralApproximatorBase.ToleranceMaxRelativeToRange, IG.Num.NeuralApproximatorBase.ToleranceMaxRelativeToRangeScalar, IG.Num.NeuralApproximatorBase.ToleranceRms, IG.Num.NeuralApproximatorBase.ToleranceRmsRelativeToRange, IG.Num.NeuralApproximatorBase.ToleranceRmsRelativeToRangeScalar, and IG.Num.NeuralApproximatorBase.TrainingData.
|
inline |
Copies only results from the trained network to the current object.
nn | Neural network approximator which results are copied from. |
References IG.Num.NeuralApproximatorBase.ConvergenceErrorsTrainingMaxList, IG.Num.NeuralApproximatorBase.ConvergenceErrorsTrainingRmsList, IG.Num.NeuralApproximatorBase.ConvergenceErrorsVerificationMaxList, IG.Num.NeuralApproximatorBase.ConvergenceErrorsVerificationRmsList, IG.Num.VectorBase.Copy(), IG.Num.NeuralApproximatorBase.EpochNumbers, IG.Num.NeuralApproximatorBase.GetErrorsTrainingMax(), IG.Num.NeuralApproximatorBase.GetErrorsTrainingMeanAbs(), IG.Num.NeuralApproximatorBase.GetErrorsTrainingRms(), IG.Num.NeuralApproximatorBase.GetErrorsVerificationMax(), IG.Num.NeuralApproximatorBase.GetErrorsVerificationMeanAbs(), IG.Num.NeuralApproximatorBase.GetErrorsVerificationRms(), IG.Num.NeuralApproximatorBase.NetworkTrained, and IG.Num.NeuralApproximatorBase.SaveConvergenceRms.
|
inline |
Copies data that determine neural network and training procedure (such as network architecture, training parameters, tolerances, etc.) from the current object to the specified neural network approximator. This enables to restore training contitions of a peviour training procedure.
nn | Neural network approximator that data is copied to. |
References IG.Num.VectorBase.Copy(), IG.Num.NeuralApproximatorBase.EpochsInBundle, IG.Num.NeuralApproximatorBase.InputBoundsSafetyFactor, IG.Num.NeuralApproximatorBase.InputLength, IG.Num.NeuralApproximatorBase.LearningRate, IG.Num.NeuralApproximatorBase.MaxEpochs, IG.Num.NeuralApproximatorBase.Momentum, IG.Num.NeuralApproximatorBase.NumHiddenLayers, IG.Num.NeuralApproximatorBase.OutputBoundsSafetyFactor, IG.Num.NeuralApproximatorBase.OutputLength, IG.Num.NeuralApproximatorBase.SaveConvergenceRms, IG.Num.NeuralApproximatorBase.SetNumNeuronsInHiddenLayer(), IG.Num.NeuralApproximatorBase.SigmoidAlphaValue, IG.Num.NeuralApproximatorBase.ToleranceMax, IG.Num.NeuralApproximatorBase.ToleranceMaxRelativeToRange, IG.Num.NeuralApproximatorBase.ToleranceMaxRelativeToRangeScalar, IG.Num.NeuralApproximatorBase.ToleranceRms, IG.Num.NeuralApproximatorBase.ToleranceRmsRelativeToRange, and IG.Num.NeuralApproximatorBase.ToleranceRmsRelativeToRangeScalar.
|
inlinestatic |
Saves (serializes) the specified training parameters object to the specified JSON file. File is owerwritten if it exists.
trainingParameters | Object that is saved to a file. |
filePath | Path to the file into which object is is saved. |
|
inlinestatic |
Saves (serializes) the specified training parameters object to the specified JSON file.
trainingParameters | Object that is saved to a file. |
filePath | Path to the file into which object is is saved. |
append | Specifies whether serialized data is appended at the end of the file in the case that the file already exists. |
|
inlinestatic |
Restores (deserializes) a training parameters object from the specified file in JSON format.
filePath | File from which object data is restored. |
trainingParametersRestored | Object that is restored by deserialization. |
|
inlinestatic |
Saves (serializes) the specified array of training parameters objects to the specified JSON file. File is owerwritten if it exists.
trainingParameters | Array that is saved to a file. |
filePath | Path to the file into which object is is saved. |
|
inlinestatic |
Saves (serializes) the specified array of training parameters objects to the specified JSON file.
trainingParameters | Array that is saved to a file. |
filePath | Path to the file into which object is is saved. |
append | Specifies whether serialized data is appended at the end of the file in the case that the file already exists. |
|
inlinestatic |
Restores (deserializes) an array of training parameters objects from the specified file in JSON format.
filePath | File from which array of objects is restored. |
trainingParametersRestored | Array of objects that is restored by deserialization. |
|
inlinestatic |
Saves (serializes) the specified list of training parameters objects to the specified JSON file. File is owerwritten if it exists.
trainingParameters | List that is saved to a file. |
filePath | Path to the file into which object is is saved. |
|
inlinestatic |
Saves (serializes) the specified list of training parameters objects to the specified JSON file.
trainingParameters | List that is saved to a file. |
filePath | Path to the file into which object is is saved. |
append | Specifies whether serialized data is appended at the end of the file in the case that the file already exists. |
|
inlinestatic |
Restores (deserializes) a list of training parameters objects from the specified file in JSON format.
filePath | File from which list of objects is restored. |
trainingParametersRestored | Array of objects that is restored by deserialization. |
|
inlinestatic |
Saves the specified list of training parameters objects to the specified CSV file.
trainingParameters | List that is saved to a file. |
filePath | Path to the file into which object is is saved. |
$A Tako78 Sep12;
|
inlinestaticprotected |
Calculate average number of the desired number of first elements in the convergence list.
ErrorConvergence | List of convergence errors. |
NumLastErrors | Number of elemnts in the convergence list. |
NumBundles | Number of epoch bundles. |
scalingLength | Scaling length. |
References IG.Num.VectorBase.NormWeighted().
|
inlinestaticprotected |
Calculate average number of the desired number of first elements in the convergence list.
ErrorConvergence | List of convergence errors. |
NumLastErrors | Number of elemnts in the convergence list. |
NumBundles | Number of bundles. |
|
inlineprotected |
|
inlinestatic |
|
static |
Default value for learning rate in neural networks.
|
static |
Default value of momentum for neural networks.
|
static |
Default value of the sigmoid alpha value (used in networks with sigmoid activation functions).
|
static |
Default value for number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between).
|
static |
Default number of hidden layers.
|
static |
Default number of hidden neurons in a layer
|
static |
Default value for maximal number of epochs.
|
static |
Default value for tollerance on RMS error in neural networks.
|
static |
Default value for tollerance on max. abs. error in neural networks.
|
static |
Default value for the tolerance on RMS error, relative to the output range.
|
static |
Default value for the tolerance on max. abs. error, relative to the output range.
|
static |
Default number of input neurons.
|
static |
Default number of output neurons.
|
static |
Default number of input safety factor.
|
static |
Default number of output safety factor.
|
protected |
|
protected |
|
protected |
|
private |
|
private |
|
private |
Gets or sets input safety factor.
|
private |
Gets or sets output safety factor.
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
private |
Auxiliary properties for defining tolerances in a relative way:
|
private |
|
private |
|
private |
|
protected |
|
protected |
|
protected |
|
protected |
List<IVector> IG.Num.NeuralTrainingParameters._errorsTrainingRmsList = null |
|
protected |
List<IVector> IG.Num.NeuralTrainingParameters._errorsTrainingMaxList = null |
|
protected |
|
protected |
List<IVector> IG.Num.NeuralTrainingParameters._errorsVerificationRmsList = null |
|
protected |
List<IVector> IG.Num.NeuralTrainingParameters._errorsVerificationMaxList = null |
|
protected |
bool IG.Num.NeuralTrainingParameters._convergenceRmsEnabled = false |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
getset |
|
getset |
Momentum. Specifies how much changes of weight in the previous iterations affect changes in the current iterations.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Sigmoid alpha value (used in networks with sigmoid activation functions).
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Gets or sets the number of input neurons.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Gets or sets the number of output neurons.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Gets or sets input safety factor.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Gets or sets output safety factor.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Maximal number of epochs performed in the training procedure.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between).
This parameter does not affect the training procedure in terms of results.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Range from actual outputs.
$A Tako78 Octl12;
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getsetprotected |
Bounding box from actual outputs.
$A Tako78 Octl12;
|
getset |
Range from actual inputs.
$A Tako78 Octl12;
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getsetprotected |
Bounding box from actual inputs.
$A Tako78 Octl12;
|
getset |
Tolerance over RMS error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Tolerance on maximal error of output over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Number of Hideden layers.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Numbers of neurons in each hidden layer.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain(), and IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable().
|
getset |
Whether the network is trained (and results exist).
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
RMS errors calculated on training data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Convergence List of Rms errors calculated on training data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Maximal errors calculated on training data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Convergence List of Maximal errors calculated on training data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Mean absolute errors calculated on training data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
RMS errors calculated on verification data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Convergence List of RMS errors calculated on verification data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Maximal errors calculated on verification data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Convergence List of Maximal errors calculated on verification data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Maximal errors calculated on training data.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
|
getset |
Number of epochs actually spent at training.
This may be less than MaxEpochs if convergence is reached before.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
Time spent for training.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
CPU time spent for training.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getprotected set |
List of epoch numbers at which convergence data was sampled.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
List of sampled RMS errors corresponding to epoch numbers from EpochNumbers.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().
|
getset |
List of sampled absolute errors corresponding to epoch numbers from EpochNumbers.
Referenced by IG.Num.NeuralTrainingParametersDto.CopyFromPlain().