IGLib  1.7.2
The IGLib base library for development of numerical, technical and business applications.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
IG.Num.NeuralTrainingParametersDto Class Reference

Transfer Object (DTO) for neural network training set. More...

+ Inheritance diagram for IG.Num.NeuralTrainingParametersDto:
+ Collaboration diagram for IG.Num.NeuralTrainingParametersDto:

Public Member Functions

override NeuralTrainingParameters CreateObject ()
 Creates and returns a new object of the corresponding type. More...
 

Public Attributes

double LearningRate
 Learning rate. More...
 
double Momentum
 Momentum. Specifies how much changes of weight in the previous iterations affect changes in the current iterations. More...
 
double SigmoidAlphaValue
 Sigmoid alpha value (used in networks with sigmoid activation functions). More...
 
int InputLength
 Gets or sets the number of input neurons. More...
 
int OutputLength
 Gets or sets the number of output neurons. More...
 
double InputBoundSafetyFactor
 
double OutputBoundSafetyFactor
 
int MaxEpochs
 Maximal number of epochs performed in the training procedure. More...
 
int EpochsInBundle
 Number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between). More...
 
VectorDtoBase InputRange
 Range from actual inputs. More...
 
VectorDtoBase OutputRange
 Range from actual outputs. More...
 
VectorDtoBase ToleranceRms
 Tolerance over RMS error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More...
 
VectorDtoBase ToleranceRmsRelativeToRange
 Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceRmsRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceRmsRelativeToRangeScalar
 Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value. More...
 
VectorDtoBase ToleranceMax
 Tolerance on maximal error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More...
 
VectorDtoBase ToleranceMaxRelativeToRange
 Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceMaxRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceMaxRelativeToRangeScalar
 Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value. More...
 
int NumHiddenLayers
 Number of Hideden layers. More...
 
int[] NumHidenNeurons
 Numbers of neurons in each hidden layer. More...
 
bool IsNetworkTrained
 Whether the network is trained (and results exist). More...
 
VectorDtoBase ErrorsTrainingRms
 RMS errors calculated on training data. More...
 
VectorDtoBase[] ErrorsTrainingRmsTable
 Convergence Table of RMS errors calculated on training data. More...
 
VectorDtoBase ErrorsTrainingMax
 Maximal errors calculated on training data. More...
 
VectorDtoBase[] ErrorsTrainingMaxTable
 Convergence Table of Maximal errors calculated on training data. More...
 
VectorDtoBase ErrorsTrainingMeanAbs
 Mean absolute errors calculated on training data. More...
 
VectorDtoBase ErrorsVerificationRms
 RMS errors calculated on verification data. More...
 
VectorDtoBase[] ErrorsVerificationRmsTable
 Convergence Table of RMS errors calculated on verification data. More...
 
VectorDtoBase ErrorsVerificationMax
 Maximal errors calculated on verification data. More...
 
VectorDtoBase[] ErrorsVerificationMaxTable
 Convergence Table of Maximal errors calculated on verification data. More...
 
VectorDtoBase ErrorsVerificationMeanAbs
 Maximal errors calculated on training data. More...
 
List< VectorDtoBaseErrorsRmsList
 
int NumEpochs
 Number of epochs actually spent at training. More...
 
double TrainingTime
 Time spent for training. More...
 
double TrainingCpuTime
 CPU time spent for training. More...
 
int[] EpochNumbers
 List of epoch numbers at which convergence data was sampled. More...
 
double[] EpochErrorsRms
 List of sampled RMS errors corresponding to epoch numbers from EpochNumbers. More...
 
double[] EpochErrorsAbs
 List of sampled absolute errors corresponding to epoch numbers from EpochNumbers. More...
 

Protected Member Functions

override void CopyFromPlain (NeuralTrainingParameters trainingParameters)
 Copies the specified training parameters to the current DTO. More...
 
override void CopyToPlain (ref NeuralTrainingParameters trainingParameters)
 Copies contents of the current DTO to the specified training parameters object. More...
 
- Protected Member Functions inherited from IG.Lib.SerializationDto< NeuralTrainingParameters >
 SerializationDto ()
 

Additional Inherited Members

- Static Public Member Functions inherited from IG.Lib.SerializationDto< NeuralTrainingParameters >
static ObjectType CopyToObjectReturned< DtoType, ObjectType > (DtoType dto, ObjectType obj)
 Replacement for CopyToObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which object state is copied. More...
 
static void CopyToObject< DtoType, ObjectType > (DtoType dto, ref ObjectType obj)
 Copies object state form the specified DTO (data transfer object) to the specified object. More...
 
static DtoType CopyFromObjectReturned< DtoType, ObjectType > (ObjectType obj, DtoType dto)
 Replacement for CopyFromObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which object state is copied. More...
 
static void CopyFromObject< DtoType, ObjectType > (ObjectType obj, ref DtoType dto)
 Copies object state form the specified object to the corresponding DTO (data transfer object). More...
 
static ObjectType[] CopyArrayToObjectReturned< DtoType, ObjectType > (DtoType[] tabDto, ObjectType[] tabObj)
 Replacement for CopyArrayToObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyArrayToObject< DtoType, ObjectType > (DtoType[] tabDto, ref ObjectType[] tabObj)
 Copies array of DTOs (Data Transfer Objects) to an array of appropriate objects. More...
 
static DtoType[] CopyArrayFromObjectReturned< DtoType, ObjectType > (ObjectType[] tabObj, DtoType[] tabDto)
 Replacement for CopyArrayFromObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyArrayFromObject< DtoType, ObjectType > (ObjectType[] tabObj, ref DtoType[] tabDto)
 Copies array of objects to an array of DTOs. More...
 
static List< ObjectType > CopyListToObjectReturned< DtoType, ObjectType > (DtoType[] tabDto, List< ObjectType > listObj)
 Replacement for CopyListToObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyListToObject< DtoType, ObjectType > (DtoType[] tabDto, ref List< ObjectType > listObj)
 Copies array of DTOs (Data Transfer Objects) to a list of appropriate objects. More...
 
static DtoType[] CopyListFromObjectReturned< DtoType, ObjectType > (List< ObjectType > tabObj, DtoType[] tabDto)
 Replacement for CopyArrayFromObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyListFromObject< DtoType, ObjectType > (List< ObjectType > tabObj, ref DtoType[] tabDto)
 Copies array of objects to a list of DTOs. More...
 

Detailed Description

Transfer Object (DTO) for neural network training set.

$A Igor Jul10; Tako78 Jun12;

Member Function Documentation

override NeuralTrainingParameters IG.Num.NeuralTrainingParametersDto.CreateObject ( )
inline

Creates and returns a new object of the corresponding type.

override void IG.Num.NeuralTrainingParametersDto.CopyFromPlain ( NeuralTrainingParameters  trainingParameters)
inlineprotected

Copies the specified training parameters to the current DTO.

Parameters
trainingParametersObject that is copied to the current DTO.

References IG.Num.NeuralTrainingParameters.EpochErrorsAbs, IG.Num.NeuralTrainingParameters.EpochErrorsRms, IG.Num.NeuralTrainingParameters.EpochNumbers, IG.Num.NeuralTrainingParameters.EpochsInBundle, IG.Num.NeuralTrainingParameters.ErrorsTrainingMax, IG.Num.NeuralTrainingParameters.ErrorsTrainingMaxList, IG.Num.NeuralTrainingParameters.ErrorsTrainingMeanAbs, IG.Num.NeuralTrainingParameters.ErrorsTrainingRms, IG.Num.NeuralTrainingParameters.ErrorsTrainingRmsList, IG.Num.NeuralTrainingParameters.ErrorsVerificationMax, IG.Num.NeuralTrainingParameters.ErrorsVerificationMaxList, IG.Num.NeuralTrainingParameters.ErrorsVerificationMeanAbs, IG.Num.NeuralTrainingParameters.ErrorsVerificationRms, IG.Num.NeuralTrainingParameters.ErrorsVerificationRmsList, IG.Num.NeuralTrainingParameters.InputBoundSafetyFactor, IG.Num.NeuralTrainingParameters.InputLength, IG.Num.NeuralTrainingParameters.InputRange, IG.Num.NeuralTrainingParameters.IsNetworkTrained, IG.Num.NeuralTrainingParameters.LearningRate, IG.Num.NeuralTrainingParameters.MaxEpochs, IG.Num.NeuralTrainingParameters.Momentum, IG.Num.NeuralTrainingParameters.NumEpochs, IG.Num.NeuralTrainingParameters.NumHiddenLayers, IG.Num.NeuralTrainingParameters.NumHidenNeurons, IG.Num.NeuralTrainingParameters.OutputBoundSafetyFactor, IG.Num.NeuralTrainingParameters.OutputLength, IG.Num.NeuralTrainingParameters.OutputRange, IG.Num.NeuralTrainingParameters.SigmoidAlphaValue, IG.Num.NeuralTrainingParameters.ToleranceMax, IG.Num.NeuralTrainingParameters.ToleranceMaxRelativeToRange, IG.Num.NeuralTrainingParameters.ToleranceMaxRelativeToRangeScalar, IG.Num.NeuralTrainingParameters.ToleranceRms, IG.Num.NeuralTrainingParameters.ToleranceRmsRelativeToRange, IG.Num.NeuralTrainingParameters.ToleranceRmsRelativeToRangeScalar, IG.Num.NeuralTrainingParameters.TrainingCpuTime, and IG.Num.NeuralTrainingParameters.TrainingTime.

override void IG.Num.NeuralTrainingParametersDto.CopyToPlain ( ref NeuralTrainingParameters  trainingParameters)
inlineprotected

Copies contents of the current DTO to the specified training parameters object.

Parameters
trainingParametersObject that the current DTO content is copied to.

Member Data Documentation

double IG.Num.NeuralTrainingParametersDto.LearningRate

Learning rate.

double IG.Num.NeuralTrainingParametersDto.Momentum

Momentum. Specifies how much changes of weight in the previous iterations affect changes in the current iterations.

double IG.Num.NeuralTrainingParametersDto.SigmoidAlphaValue

Sigmoid alpha value (used in networks with sigmoid activation functions).

int IG.Num.NeuralTrainingParametersDto.InputLength

Gets or sets the number of input neurons.

int IG.Num.NeuralTrainingParametersDto.OutputLength

Gets or sets the number of output neurons.

double IG.Num.NeuralTrainingParametersDto.InputBoundSafetyFactor
double IG.Num.NeuralTrainingParametersDto.OutputBoundSafetyFactor
int IG.Num.NeuralTrainingParametersDto.MaxEpochs

Maximal number of epochs performed in the training procedure.

$A Tako78 Jul12;

int IG.Num.NeuralTrainingParametersDto.EpochsInBundle

Number of epochs in bundle (i.e. number of epochs performed at once, without any checks or output operations between).

This parameter does not affect the training procedure in terms of results.

$A Tako78 Jul12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.InputRange

Range from actual inputs.

$A Tako78 Octl12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.OutputRange

Range from actual outputs.

$A Tako78 Octl12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ToleranceRms

Tolerance over RMS error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.

$A Tako78 Jul12; Igor Jul12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ToleranceRmsRelativeToRange

Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRange
double IG.Num.NeuralTrainingParametersDto.ToleranceRmsRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceRmsRelativeToRangeScalar

Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRangeScalar
VectorDtoBase IG.Num.NeuralTrainingParametersDto.ToleranceMax

Tolerance on maximal error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.

$A Tako78 Jul12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ToleranceMaxRelativeToRange

Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRange
double IG.Num.NeuralTrainingParametersDto.ToleranceMaxRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceMaxRelativeToRangeScalar

Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRangeScalar
int IG.Num.NeuralTrainingParametersDto.NumHiddenLayers

Number of Hideden layers.

$A Tako78 Jul12;

int [] IG.Num.NeuralTrainingParametersDto.NumHidenNeurons

Numbers of neurons in each hidden layer.

$A Tako78 Jul12;

bool IG.Num.NeuralTrainingParametersDto.IsNetworkTrained

Whether the network is trained (and results exist).

$A Tako78 Jul12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ErrorsTrainingRms

RMS errors calculated on training data.

$A Tako78 Jul12;

VectorDtoBase [] IG.Num.NeuralTrainingParametersDto.ErrorsTrainingRmsTable

Convergence Table of RMS errors calculated on training data.

$A Tako78 Aug12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ErrorsTrainingMax

Maximal errors calculated on training data.

$A Tako78 Jul12;

VectorDtoBase [] IG.Num.NeuralTrainingParametersDto.ErrorsTrainingMaxTable

Convergence Table of Maximal errors calculated on training data.

$A Tako78 Aug12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ErrorsTrainingMeanAbs

Mean absolute errors calculated on training data.

$A Tako78 Jul12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ErrorsVerificationRms

RMS errors calculated on verification data.

$A Tako78 Jul12;

VectorDtoBase [] IG.Num.NeuralTrainingParametersDto.ErrorsVerificationRmsTable

Convergence Table of RMS errors calculated on verification data.

$A Tako78 Aug12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ErrorsVerificationMax

Maximal errors calculated on verification data.

$A Tako78 Jul12;

VectorDtoBase [] IG.Num.NeuralTrainingParametersDto.ErrorsVerificationMaxTable

Convergence Table of Maximal errors calculated on verification data.

$A Tako78 Aug12;

VectorDtoBase IG.Num.NeuralTrainingParametersDto.ErrorsVerificationMeanAbs

Maximal errors calculated on training data.

$A Tako78 Jul12;

List<VectorDtoBase> IG.Num.NeuralTrainingParametersDto.ErrorsRmsList
int IG.Num.NeuralTrainingParametersDto.NumEpochs

Number of epochs actually spent at training.

$A Tako78 Jul12;

double IG.Num.NeuralTrainingParametersDto.TrainingTime

Time spent for training.

$A Tako78 Jul12;;

double IG.Num.NeuralTrainingParametersDto.TrainingCpuTime

CPU time spent for training.

$A Tako78 Jul12;

int [] IG.Num.NeuralTrainingParametersDto.EpochNumbers

List of epoch numbers at which convergence data was sampled.

double [] IG.Num.NeuralTrainingParametersDto.EpochErrorsRms

List of sampled RMS errors corresponding to epoch numbers from EpochNumbers.

double [] IG.Num.NeuralTrainingParametersDto.EpochErrorsAbs

List of sampled absolute errors corresponding to epoch numbers from EpochNumbers.


The documentation for this class was generated from the following file: