IGLib  1.7.2
The IGLib base library for development of numerical, technical and business applications.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
IG.Num.NeuralTrainingLimits Class Reference

Contains Parameters that define neural network architecture limits and trainig parameter limits. More...

+ Collaboration diagram for IG.Num.NeuralTrainingLimits:

Public Member Functions

void PrepareNumHiddenNeuronsValuesArray (int numLayers, params int[] numHiddenNeuronsValues)
 Prepares values of numbers of neurons in individual layers according to parameters. More...
 
void PrepareNumHiddenNeuronsValuesArray (int numLayers, int minNumNeurons, int maxNumNeurons, int numValues, double intervalGrowthFactor)
 Prepares values of numbers of neurons in individual layers according to parameters in such a way that intervals between these values grow exponentially. More...
 
delegate void DoForParameters (List< NeuralTrainingParameters > trainingParameters, List< int > dimensions, int which)
 
void DoForParameters_CreateTable (List< NeuralTrainingParameters > trainingParameters, List< int > dimensions, int which)
 
void CreateTrainingTable (List< NeuralTrainingParameters > trainingParameters, List< int > tableDimensions)
 Creates a table of training parameters. More...
 
void CreateTrainingTable (List< NeuralTrainingParameters > trainingParameters)
 Creates a table of training parameters. More...
 
void IterateThroughMultidimensionalTable (List< NeuralTrainingParameters > tableResults, List< int > tableDimensions, bool createTable, bool createDimensions, DoForParameters doOnElement)
 Iterates through all elements of the table of training results defined by the current object, and does whatever is specified by the parameters. More...
 

Static Public Member Functions

static void SaveJson (NeuralTrainingLimits trainingLimits, string filePath)
 Saves (serializes) the specified array of training limits objects to the specified JSON file. File is owerwritten if it exists. More...
 
static void SaveJson (NeuralTrainingLimits trainingLimits, string filePath, bool append)
 Saves (serializes) the specified array of training limits objects to the specified JSON file. More...
 
static void LoadJson (string filePath, ref NeuralTrainingLimits trainingLimits)
 Restores (deserializes) an array of training parameters objects from the specified file in JSON format. More...
 

Static Public Attributes

static double DefaultLearningRateMin = 0.1
 Default value for minimum learning rate in neural networks. More...
 
static double DefaultLearningRateMax = 0.6
 Default value for maximum learning rate in neural networks. More...
 
static int DefaultLearningRateNum = 5
 Default value for number of learning rates in neural networks. More...
 
static double DefaultMomentumMin = 0.3
 Default value for minimum momentum in neural networks. More...
 
static double DefaultMomentumMax = 0.8
 Default value for maximum momentum in neural networks. More...
 
static int DefaultMomentumNum = 5
 Default value for number of momentums in neural networks. More...
 
static double DefaultAlphaMin = 1.0
 Default value for minimum alpha value in neural networks. More...
 
static double DefaultAlphaMax = 2.0
 Default value for maximum alpha value in neural networks. More...
 
static int DefaultAlphaNum = 5
 Default value for number of alpha values in neural networks. More...
 
static double DefaultInputSafetyFactorMin = 1.4
 Default value for minimum input bound safety factor value in neural networks. More...
 
static double DefaultInputSafetyFactorMax = 1.4
 Default value for maximum input bound safety factor value in neural networks. More...
 
static int DefaultInputSafetyFactorNum = 1
 Default value for number of input bound safety factors values in neural networks. More...
 
static double DefaultOutputSafetyFactorMin = 1.4
 Default value for minimum output bound safety factor value in neural networks. More...
 
static double DefaultOutputSafetyFactorMax = 1.4
 Default value for maximum output bound safety factor value in neural networks. More...
 
static int DefaultOutputSafetyFactorNum = 1
 Default value for number of output bound safety factors values in neural networks. More...
 
static bool DefaultEnableArchitectureTest = false
 Default flag for enabling different layers in neural networks. More...
 
static int DefaultNumHiddenLayersNum = 1
 Default value for number of hidden layers in neural networks. More...
 
static int DefaultNumHiddenNeuronsFirstMin = 5
 Default value for number of hidden neurons in first hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsFirstMax = 25
 Default value for number of hidden neurons in first hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsFirstNum = 1
 Default value for number of hidden neurons in first hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsSecondMin = 2
 Default value for number of hidden neurons in second hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsSecondMax = 10
 Default value for number of hidden neurons in second hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsSecondNum = 1
 Default value for number of hidden neurons in second hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsThirdMin = 2
 Default value for number of hidden neurons in third hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsThirdMax = 10
 Default value for number of hidden neurons in third hidden layer in neural networks. More...
 
static int DefaultNumHiddenNeuronsThirdNum = 1
 Default value for number of hidden neurons in third hidden layer in neural networks. More...
 
static int DefaultMaxEpochs = 1000
 Default value for maximum number of epochs in neural networks. More...
 
static int DefaultEpochBundle = 100
 Default value for number of epochs in bundle in neural networks. More...
 
static bool DefaultEnableRangeTolerance = false
 Flag for enabling toelrance that represent a percentage of the output range. More...
 
static int DefaultInputLenght = 5
 Default value for number of input neurons. More...
 
static int DefaultOutputLenght = 3
 Default value for number of output neurons. More...
 

Protected Member Functions

int[] GetArrayCopy (int[] original)
 Creates and returns a copy of the specified array of integers. More...
 
int[] GetArrayCopyInt (double[] original)
 Creates and returns an array of integers that is a copy of the specified array of double values (double to integer conversion made by rounding). More...
 

Protected Attributes

double _learningRateMin = NeuralTrainingParameters.DefaultLearningRate
 
double _learningRateMax = NeuralTrainingParameters.DefaultLearningRate
 
int _learningRateNum = 1
 
double _momentumMin = DefaultMomentumMin
 
double _momentumMax = DefaultMomentumMax
 
int _momentumNum = DefaultMomentumNum
 
double _alphaMin = DefaultAlphaMin
 
double _alphaMax = DefaultAlphaMax
 
int _alphaNum = DefaultAlphaNum
 
double _inputSafetyFactorMin = DefaultInputSafetyFactorMin
 
double _inputSafetyFactorMax = DefaultInputSafetyFactorMax
 
int _inputSafetyFactorNum = DefaultInputSafetyFactorNum
 
double _outputSafetyFactorMin = DefaultOutputSafetyFactorMin
 
double _outputSafetyFactorMax = DefaultOutputSafetyFactorMax
 
int _outputSafetyFactorNum = DefaultOutputSafetyFactorNum
 
int _maxEpochs = DefaultMaxEpochs
 
int _epochBundle = DefaultEpochBundle
 
int _inputLenght = DefaultInputLenght
 
int _outputLenght = DefaultOutputLenght
 
bool _enableRangeTolerance = DefaultEnableRangeTolerance
 
IVector _toleranceRms
 
IVector _toleranceMax
 
bool _enableArchitectureTest = DefaultEnableArchitectureTest
 
int _numHiddenLayersNum = DefaultNumHiddenLayersNum
 
int _numHiddenNeuronsFirstMin = DefaultNumHiddenNeuronsFirstMin
 
int _numHiddenNeuronsFirstMax = DefaultNumHiddenNeuronsFirstMax
 
int _numHiddenNeuronsFirstNum = DefaultNumHiddenNeuronsFirstNum
 
int[] _numHiddenNeuronsFirstValues
 
bool randomTableEnabled = false
 
int _numHiddenNeuronsSecondMin = DefaultNumHiddenNeuronsSecondMin
 
int _numHiddenNeuronsSecondMax = DefaultNumHiddenNeuronsSecondMax
 
int _numHiddenNeuronsSecondNum = DefaultNumHiddenNeuronsSecondNum
 
int[] _numHiddenNeuronsSecondValues
 
int _numHiddenNeuronsThirdMin = DefaultNumHiddenNeuronsThirdMin
 
int _numHiddenNeuronsThirdMax = DefaultNumHiddenNeuronsThirdMax
 
int _numHiddenNeuronsThirdNum = DefaultNumHiddenNeuronsThirdNum
 
int[] _numHiddenNeuronsThirdValues
 

Properties

double LearningRateMin [get, set]
 Minimum limit for learning rate. More...
 
double LearningRateMax [get, set]
 Maximum limit for learning rate. More...
 
int LearningRateNum [get, set]
 Number of learning rates. More...
 
double MomentumMin [get, set]
 Minimum limit for momentum. More...
 
double MomentumMax [get, set]
 Maximum limit for momentum. More...
 
int MomentumNum [get, set]
 Number of momentums. More...
 
double AlphaMin [get, set]
 Minimum limit for alpha value. More...
 
double AlphaMax [get, set]
 Maximum limit for alpha value. More...
 
int AlphaNum [get, set]
 Number of alpha value. More...
 
double InputSafetyFactorMin [get, set]
 Minimum limit for input safety factor value. More...
 
double InputSafetyFactorMax [get, set]
 Maximum limit for input safety factor value. More...
 
int InputSafetyFactorNum [get, set]
 Number of input safety factor values. More...
 
double OutputSafetyFactorMin [get, set]
 Minimum limit for output safety factor value. More...
 
double OutputSafetyFactorMax [get, set]
 Maximum limit for output safety factor value. More...
 
int OutputSafetyFactorNum [get, set]
 Number of output safety factor values. More...
 
int MaxEpochs [get, set]
 Maximum number of epochs performed in training. More...
 
int EpochBundle [get, set]
 Number of epochs in boundle. More...
 
int InputLenght [get, set]
 Number of input neurons. More...
 
int OutputLength [get, set]
 Number of output neurons. More...
 
bool EnableRangeTolerance [get, set]
 Flag for enabling toelrance that represent a percentage of the output range. More...
 
IVector ToleranceRms [get, set]
 Tolerance for RMS. More...
 
IVector ToleranceMax [get, set]
 Maximum tolerance for max. abs. difference. More...
 
IVector ToleranceRmsRelativeToRange [get, set]
 Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceRmsRelativeToRangeScalar [get, set]
 Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value. More...
 
IVector ToleranceMaxRelativeToRange [get, set]
 Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceMaxRelativeToRangeScalar [get, set]
 Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value. More...
 
bool EnableArchitectureTest [get, set]
 Flag for enabling test in architecture of ANN. More...
 
int NumHiddenLayersNum [get, set]
 Number of hidden layers in neural network. More...
 
int NumHiddenNeuronsFirstMin [get, set]
 Minimum number of hidden neurons in first hidden layer. More...
 
int NumHiddenNeuronsFirstMax [get, set]
 Maximum number of hidden neurons in first hidden layer. More...
 
int NumHiddenNeuronsFirstNum [get, set]
 Number of hidden neurons in first hidden layer. More...
 
int[] NumHiddenNeuronsFirstValues [get, set]
 Values of number of hidden neurons in the first layers that will appear in the table. More...
 
int NumHiddenNeuronsSecondMin [get, set]
 Minimum number of hidden neurons in second hidden layer. More...
 
int NumHiddenNeuronsSecondMax [get, set]
 Maximum number of hidden neurons in second hidden layer. More...
 
int NumHiddenNeuronsSecondNum [get, set]
 Number of hidden neurons in second hidden layer. More...
 
int[] NumHiddenNeuronsSecondValues [get, set]
 Values of number of hidden neurons in the second layers that will appear in the table. More...
 
int NumHiddenNeuronsThirdMin [get, set]
 Minimum number of hidden neurons in third hidden layer. More...
 
int NumHiddenNeuronsThirdMax [get, set]
 Maximum number of hidden neurons in third hidden layer. More...
 
int NumHiddenNeuronsThirdNum [get, set]
 Number of hidden neurons in third hidden layer. More...
 
int[] NumHiddenNeuronsThirdValues [get, set]
 Values of number of hidden neurons in the third layer that will appear in the table. More...
 

Private Member Functions

void PrepareNeuronsTable (int minNeurons, int maxNeurons, int numNeurons, double growthFactorref, ref int[] neurpnsTable)
 Prepares table of neurons in geometric sequence. More...
 
void PrepareNeuronTable (ref int[] neuronsFirstLayer, ref int[] neuronsSecondLayer, ref int[] neuronsThirdLayer)
 

Private Attributes

IVector _tolRmsRelative
 Auxiliary properties for defining tolerances in a relative way: More...
 
double _tolRmsRelativeScalar = NeuralTrainingParameters.DefaultToleranceRmsRelativeToRangeScalar
 
IVector _tolMaxRelative
 
double _tolMaxRelativeScalar = NeuralTrainingParameters.DefaultToleranceMaxRelativeToRangeScalar
 

Detailed Description

Contains Parameters that define neural network architecture limits and trainig parameter limits.

Not thread safe!

This class is used for storing training parameter limits of neural networks and restoring them at a later time, in order to repeat training under similar condition or simply to analyse performance of neural networks.

$A Igor Jul10 Aug12 Nov12; Tako78 Aug12;

Member Function Documentation

int [] IG.Num.NeuralTrainingLimits.GetArrayCopy ( int[]  original)
inlineprotected

Creates and returns a copy of the specified array of integers.

Parameters
originalArray whose copy is returned.
int [] IG.Num.NeuralTrainingLimits.GetArrayCopyInt ( double[]  original)
inlineprotected

Creates and returns an array of integers that is a copy of the specified array of double values (double to integer conversion made by rounding).

Parameters
originalArray whose copy is returned.
void IG.Num.NeuralTrainingLimits.PrepareNumHiddenNeuronsValuesArray ( int  numLayers,
params int[]  numHiddenNeuronsValues 
)
inline

Prepares values of numbers of neurons in individual layers according to parameters.

For each layer, numbers of neurons in that layers to be used in the table are the same.

Parameters
numLayersNumber of hidden layers (this is fixed for the tables where this method is used; the containing class also does not support tables where number of layers would vary).
numHiddenNeuronsValuesValues for the number of hidden neurons in different layers (common for all layers).
void IG.Num.NeuralTrainingLimits.PrepareNumHiddenNeuronsValuesArray ( int  numLayers,
int  minNumNeurons,
int  maxNumNeurons,
int  numValues,
double  intervalGrowthFactor 
)
inline

Prepares values of numbers of neurons in individual layers according to parameters in such a way that intervals between these values grow exponentially.

Parameters
numLayersNumber of hidden layers (this is fixed for the tables where this method is used; the containing class also does not support tables where number of layers would vary).
minNumNeuronsMinimal value for the number fo neurons in hidden layers.
maxNumNeuronsMaxmial value for the number of neurons in hidden layers.
numValuesNumber of values for the number of neurons in hidden layers.
intervalGrowthFactorFactor by which length of each next iterval befoore successive values for the number of neurons in hidden layers is extended.

References IG.Num.GridGenerator1dBase.GetNodeTable().

delegate void IG.Num.NeuralTrainingLimits.DoForParameters ( List< NeuralTrainingParameters trainingParameters,
List< int >  dimensions,
int  which 
)
void IG.Num.NeuralTrainingLimits.DoForParameters_CreateTable ( List< NeuralTrainingParameters trainingParameters,
List< int >  dimensions,
int  which 
)
inline
void IG.Num.NeuralTrainingLimits.CreateTrainingTable ( List< NeuralTrainingParameters trainingParameters,
List< int >  tableDimensions 
)
inline

Creates a table of training parameters.

Parameters
trainingParametersList where table of parameters is stored. Must be different than null. Eventual elements already contained will be deleted.
tableDimensionsList of dimensions of the generated table. If specified then table dimensions will be put on the list (the list is cleared at the beinning).
void IG.Num.NeuralTrainingLimits.CreateTrainingTable ( List< NeuralTrainingParameters trainingParameters)
inline

Creates a table of training parameters.

Parameters
trainingParametersList where table of parameters is stored. Must be different than null. Eventual elements already contained will be deleted.
void IG.Num.NeuralTrainingLimits.PrepareNeuronsTable ( int  minNeurons,
int  maxNeurons,
int  numNeurons,
double  growthFactorref,
ref int[]  neurpnsTable 
)
inlineprivate

Prepares table of neurons in geometric sequence.

Parameters
minNeuronsMinimum number of neurons.
maxNeuronsMaximum number of neurons.
numNeuronsNumber of neurons in sequence.
growthFactorrefGrowth factor.
neurpnsTableTable of neurons.

$A Tako78 Nov12;

References IG.Num.GridGenerator1dBase.CoordinateFirst, IG.Num.GridGenerator1dBase.CoordinateLast, IG.Num.GridGenerator1dBase.GetNodeTable(), IG.Num.GridGenerator1d.GrowthFactor, and IG.Num.GridGenerator1dBase.NumNodes.

void IG.Num.NeuralTrainingLimits.PrepareNeuronTable ( ref int[]  neuronsFirstLayer,
ref int[]  neuronsSecondLayer,
ref int[]  neuronsThirdLayer 
)
inlineprivate
void IG.Num.NeuralTrainingLimits.IterateThroughMultidimensionalTable ( List< NeuralTrainingParameters tableResults,
List< int >  tableDimensions,
bool  createTable,
bool  createDimensions,
DoForParameters  doOnElement 
)
inline

Iterates through all elements of the table of training results defined by the current object, and does whatever is specified by the parameters.

Parameters
tableResultsTable where training parameters and results are stored. Must be specified when this table is created (i.e. parameter createTable is true) or when something must be done on each element (i.e. function parameter is doOnElement defined).
tableDimensionsTable where dimensions are stored. Must be specified when the table of dimensions will be created (i.e. the parameter createDimensions is true).
createTableSpecifies whether the table of training parameters and results will be created by the function call. If true then the parameter tableResults must be specified.
createDimensionsSpecifies whether the table of dimensions will be created when iterating over elements. If true then the parameter tableDimensions must be specified.
doOnElementDelegate that is executed on each element of the table. Index of the current element, as well as the table of the resulet (parameter tableResults ) and the table of dimensions (parameter tableDimensions ) are passed to the delegate when executed.

References IG.Num.VectorBase.Copy(), IG.Num.NeuralTrainingParameters.EpochsInBundle, IG.Num.NeuralTrainingParameters.InputBoundSafetyFactor, IG.Num.NeuralTrainingParameters.InputLength, IG.Num.NeuralTrainingParameters.LearningRate, IG.Num.NeuralTrainingParameters.MaxEpochs, IG.Num.NeuralTrainingParameters.Momentum, IG.Num.NeuralTrainingParameters.NumHiddenLayers, IG.Num.NeuralTrainingParameters.NumHidenNeurons, IG.Num.NeuralTrainingParameters.OutputBoundSafetyFactor, IG.Num.NeuralTrainingParameters.OutputLength, IG.Num.NeuralTrainingParameters.SigmoidAlphaValue, IG.Num.NeuralTrainingParameters.ToleranceMax, IG.Num.NeuralTrainingParameters.ToleranceMaxRelativeToRange, IG.Num.NeuralTrainingParameters.ToleranceMaxRelativeToRangeScalar, IG.Num.NeuralTrainingParameters.ToleranceRms, IG.Num.NeuralTrainingParameters.ToleranceRmsRelativeToRange, and IG.Num.NeuralTrainingParameters.ToleranceRmsRelativeToRangeScalar.

Referenced by IG.Num.NeuralTrainingTable.UpdateTrainingTableDimensionns().

static void IG.Num.NeuralTrainingLimits.SaveJson ( NeuralTrainingLimits  trainingLimits,
string  filePath 
)
inlinestatic

Saves (serializes) the specified array of training limits objects to the specified JSON file. File is owerwritten if it exists.

Parameters
trainingLimitsContains neural network architectural limits and limits for training parameters.
filePathPath to the file into which object is is saved.
static void IG.Num.NeuralTrainingLimits.SaveJson ( NeuralTrainingLimits  trainingLimits,
string  filePath,
bool  append 
)
inlinestatic

Saves (serializes) the specified array of training limits objects to the specified JSON file.

Parameters
trainingLimitsContains neural network architectural limits and limits for training parameters.
filePathPath to the file into which object is is saved.
appendSpecifies whether serialized data is appended at the end of the file in the case that the file already exists.
static void IG.Num.NeuralTrainingLimits.LoadJson ( string  filePath,
ref NeuralTrainingLimits  trainingLimits 
)
inlinestatic

Restores (deserializes) an array of training parameters objects from the specified file in JSON format.

Parameters
filePathFile from which array of objects is restored.
trainingLimitsContains neural network architectural limits and limits for training parameters.

Member Data Documentation

double IG.Num.NeuralTrainingLimits.DefaultLearningRateMin = 0.1
static

Default value for minimum learning rate in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultLearningRateMax = 0.6
static

Default value for maximum learning rate in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultLearningRateNum = 5
static

Default value for number of learning rates in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultMomentumMin = 0.3
static

Default value for minimum momentum in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultMomentumMax = 0.8
static

Default value for maximum momentum in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultMomentumNum = 5
static

Default value for number of momentums in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultAlphaMin = 1.0
static

Default value for minimum alpha value in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultAlphaMax = 2.0
static

Default value for maximum alpha value in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultAlphaNum = 5
static

Default value for number of alpha values in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultInputSafetyFactorMin = 1.4
static

Default value for minimum input bound safety factor value in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultInputSafetyFactorMax = 1.4
static

Default value for maximum input bound safety factor value in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultInputSafetyFactorNum = 1
static

Default value for number of input bound safety factors values in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultOutputSafetyFactorMin = 1.4
static

Default value for minimum output bound safety factor value in neural networks.

double IG.Num.NeuralTrainingLimits.DefaultOutputSafetyFactorMax = 1.4
static

Default value for maximum output bound safety factor value in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultOutputSafetyFactorNum = 1
static

Default value for number of output bound safety factors values in neural networks.

bool IG.Num.NeuralTrainingLimits.DefaultEnableArchitectureTest = false
static

Default flag for enabling different layers in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenLayersNum = 1
static

Default value for number of hidden layers in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsFirstMin = 5
static

Default value for number of hidden neurons in first hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsFirstMax = 25
static

Default value for number of hidden neurons in first hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsFirstNum = 1
static

Default value for number of hidden neurons in first hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsSecondMin = 2
static

Default value for number of hidden neurons in second hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsSecondMax = 10
static

Default value for number of hidden neurons in second hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsSecondNum = 1
static

Default value for number of hidden neurons in second hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsThirdMin = 2
static

Default value for number of hidden neurons in third hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsThirdMax = 10
static

Default value for number of hidden neurons in third hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultNumHiddenNeuronsThirdNum = 1
static

Default value for number of hidden neurons in third hidden layer in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultMaxEpochs = 1000
static

Default value for maximum number of epochs in neural networks.

int IG.Num.NeuralTrainingLimits.DefaultEpochBundle = 100
static

Default value for number of epochs in bundle in neural networks.

bool IG.Num.NeuralTrainingLimits.DefaultEnableRangeTolerance = false
static

Flag for enabling toelrance that represent a percentage of the output range.

int IG.Num.NeuralTrainingLimits.DefaultInputLenght = 5
static

Default value for number of input neurons.

int IG.Num.NeuralTrainingLimits.DefaultOutputLenght = 3
static

Default value for number of output neurons.

double IG.Num.NeuralTrainingLimits._learningRateMin = NeuralTrainingParameters.DefaultLearningRate
protected
double IG.Num.NeuralTrainingLimits._learningRateMax = NeuralTrainingParameters.DefaultLearningRate
protected
int IG.Num.NeuralTrainingLimits._learningRateNum = 1
protected
double IG.Num.NeuralTrainingLimits._momentumMin = DefaultMomentumMin
protected
double IG.Num.NeuralTrainingLimits._momentumMax = DefaultMomentumMax
protected
int IG.Num.NeuralTrainingLimits._momentumNum = DefaultMomentumNum
protected
double IG.Num.NeuralTrainingLimits._alphaMin = DefaultAlphaMin
protected
double IG.Num.NeuralTrainingLimits._alphaMax = DefaultAlphaMax
protected
int IG.Num.NeuralTrainingLimits._alphaNum = DefaultAlphaNum
protected
double IG.Num.NeuralTrainingLimits._inputSafetyFactorMin = DefaultInputSafetyFactorMin
protected
double IG.Num.NeuralTrainingLimits._inputSafetyFactorMax = DefaultInputSafetyFactorMax
protected
int IG.Num.NeuralTrainingLimits._inputSafetyFactorNum = DefaultInputSafetyFactorNum
protected
double IG.Num.NeuralTrainingLimits._outputSafetyFactorMin = DefaultOutputSafetyFactorMin
protected
double IG.Num.NeuralTrainingLimits._outputSafetyFactorMax = DefaultOutputSafetyFactorMax
protected
int IG.Num.NeuralTrainingLimits._outputSafetyFactorNum = DefaultOutputSafetyFactorNum
protected
int IG.Num.NeuralTrainingLimits._maxEpochs = DefaultMaxEpochs
protected
int IG.Num.NeuralTrainingLimits._epochBundle = DefaultEpochBundle
protected
int IG.Num.NeuralTrainingLimits._inputLenght = DefaultInputLenght
protected
int IG.Num.NeuralTrainingLimits._outputLenght = DefaultOutputLenght
protected
bool IG.Num.NeuralTrainingLimits._enableRangeTolerance = DefaultEnableRangeTolerance
protected
IVector IG.Num.NeuralTrainingLimits._toleranceRms
protected
IVector IG.Num.NeuralTrainingLimits._toleranceMax
protected
IVector IG.Num.NeuralTrainingLimits._tolRmsRelative
private

Auxiliary properties for defining tolerances in a relative way:

double IG.Num.NeuralTrainingLimits._tolRmsRelativeScalar = NeuralTrainingParameters.DefaultToleranceRmsRelativeToRangeScalar
private
IVector IG.Num.NeuralTrainingLimits._tolMaxRelative
private
double IG.Num.NeuralTrainingLimits._tolMaxRelativeScalar = NeuralTrainingParameters.DefaultToleranceMaxRelativeToRangeScalar
private
bool IG.Num.NeuralTrainingLimits._enableArchitectureTest = DefaultEnableArchitectureTest
protected
int IG.Num.NeuralTrainingLimits._numHiddenLayersNum = DefaultNumHiddenLayersNum
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsFirstMin = DefaultNumHiddenNeuronsFirstMin
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsFirstMax = DefaultNumHiddenNeuronsFirstMax
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsFirstNum = DefaultNumHiddenNeuronsFirstNum
protected
int [] IG.Num.NeuralTrainingLimits._numHiddenNeuronsFirstValues
protected
bool IG.Num.NeuralTrainingLimits.randomTableEnabled = false
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsSecondMin = DefaultNumHiddenNeuronsSecondMin
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsSecondMax = DefaultNumHiddenNeuronsSecondMax
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsSecondNum = DefaultNumHiddenNeuronsSecondNum
protected
int [] IG.Num.NeuralTrainingLimits._numHiddenNeuronsSecondValues
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsThirdMin = DefaultNumHiddenNeuronsThirdMin
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsThirdMax = DefaultNumHiddenNeuronsThirdMax
protected
int IG.Num.NeuralTrainingLimits._numHiddenNeuronsThirdNum = DefaultNumHiddenNeuronsThirdNum
protected
int [] IG.Num.NeuralTrainingLimits._numHiddenNeuronsThirdValues
protected

Property Documentation

double IG.Num.NeuralTrainingLimits.LearningRateMin
getset

Minimum limit for learning rate.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.LearningRateMax
getset

Maximum limit for learning rate.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.LearningRateNum
getset

Number of learning rates.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.MomentumMin
getset

Minimum limit for momentum.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.MomentumMax
getset

Maximum limit for momentum.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.MomentumNum
getset

Number of momentums.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.AlphaMin
getset

Minimum limit for alpha value.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.AlphaMax
getset

Maximum limit for alpha value.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.AlphaNum
getset

Number of alpha value.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.InputSafetyFactorMin
getset

Minimum limit for input safety factor value.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.InputSafetyFactorMax
getset

Maximum limit for input safety factor value.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.InputSafetyFactorNum
getset

Number of input safety factor values.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.OutputSafetyFactorMin
getset

Minimum limit for output safety factor value.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.OutputSafetyFactorMax
getset

Maximum limit for output safety factor value.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.OutputSafetyFactorNum
getset

Number of output safety factor values.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.MaxEpochs
getset

Maximum number of epochs performed in training.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.EpochBundle
getset

Number of epochs in boundle.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.InputLenght
getset

Number of input neurons.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.OutputLength
getset

Number of output neurons.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

bool IG.Num.NeuralTrainingLimits.EnableRangeTolerance
getset

Flag for enabling toelrance that represent a percentage of the output range.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingLimits.ToleranceRms
getset

Tolerance for RMS.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingLimits.ToleranceMax
getset

Maximum tolerance for max. abs. difference.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingLimits.ToleranceRmsRelativeToRange
getset

Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRange

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.ToleranceRmsRelativeToRangeScalar
getset

Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRangeScalar

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

IVector IG.Num.NeuralTrainingLimits.ToleranceMaxRelativeToRange
getset

Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRange

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

double IG.Num.NeuralTrainingLimits.ToleranceMaxRelativeToRangeScalar
getset

Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRangeScalar

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

bool IG.Num.NeuralTrainingLimits.EnableArchitectureTest
getset

Flag for enabling test in architecture of ANN.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenLayersNum
getset

Number of hidden layers in neural network.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstMin
getset

Minimum number of hidden neurons in first hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstMax
getset

Maximum number of hidden neurons in first hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstNum
getset

Number of hidden neurons in first hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int [] IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstValues
getset

Values of number of hidden neurons in the first layers that will appear in the table.

Specifying an array of values for the number of hidden neurons in the first layer makes possible to use custom values, not just equidistant values between minimal and maximal value.

If array of values is set, the number of values is set to the length of the array, minimal value is set to its first element and maximal value is set to its last element.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondMin
getset

Minimum number of hidden neurons in second hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondMax
getset

Maximum number of hidden neurons in second hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondNum
getset

Number of hidden neurons in second hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int [] IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondValues
getset

Values of number of hidden neurons in the second layers that will appear in the table.

Specifying an array of values for the number of hidden neurons in the second layer makes possible to use custom values, not just equidistant values between minimal and maximal value.

If array of values is set, the number of values is set to the length of the array, minimal value is set to its first element and maximal value is set to its last element.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdMin
getset

Minimum number of hidden neurons in third hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdMax
getset

Maximum number of hidden neurons in third hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdNum
getset

Number of hidden neurons in third hidden layer.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().

int [] IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdValues
getset

Values of number of hidden neurons in the third layer that will appear in the table.

Specifying an array of values for the number of hidden neurons in the third layer makes possible to use custom values, not just equidistant values between minimal and maximal value.

If the array of values is set, the number of values is set to the length of the array, minimal value is set to its first element and maximal value is set to its last element.

Referenced by IG.Num.NeuralTrainingLimitsDto.CopyFromPlain().


The documentation for this class was generated from the following file: