IGLib  1.7.2
The IGLib base library for development of numerical, technical and business applications.
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
IG.Num.NeuralTrainingLimitsDto Class Reference

Transfer Object (DTO) for neural network training limits. More...

+ Inheritance diagram for IG.Num.NeuralTrainingLimitsDto:
+ Collaboration diagram for IG.Num.NeuralTrainingLimitsDto:

Public Member Functions

override NeuralTrainingLimits CreateObject ()
 Creates and returns a new object of the corresponding type. More...
 

Public Attributes

double LearningRateMin
 Minimum limit for learning rate. More...
 
double LearningRateMax
 Maximum limit for learning rate. More...
 
int LearningRateNum
 Number of learning rates. More...
 
double MomentumMin
 Minimum limit for momentum. More...
 
double MomentumMax
 Maximum limit for momentum. More...
 
int MomentumNum
 Number of momentums. More...
 
double AlphaMin
 Minimum limit for alpha value. More...
 
double AlphaMax
 Maximum limit for alpha value. More...
 
int AlphaNum
 Number of alpha values. More...
 
double InputSafetyFactorMin
 Minimum limit for input safety factor value. More...
 
double InputSafetyFactorMax
 Maximum limit for input safety factor value. More...
 
int InputSafetyFactorNum
 Number of input safety factor values. More...
 
double OutputSafetyFactorMin
 Minimum limit for output safety factor value. More...
 
double OutputSafetyFactorMax
 Maximum limit for output safety factor value. More...
 
int OutputSafetyFactorNum
 Number of output safety factor values. More...
 
int MaxEpochs
 Maximum number of epochs performed in training. More...
 
int EpochBundle
 Number of epochs in boundle. More...
 
bool EnableRangeTolerance
 Flag for enabling toelrance that represent a percentage of the output range. More...
 
VectorDtoBase ToleranceRms
 Tolerance over RMS error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More...
 
VectorDtoBase ToleranceRmsRelativeToRange
 Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceRmsRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceRmsRelativeToRangeScalar
 Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value. More...
 
VectorDtoBase ToleranceMax
 Tolerance on maximal error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account. More...
 
VectorDtoBase ToleranceMaxRelativeToRange
 Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data. More...
 
double ToleranceMaxRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceMaxRelativeToRangeScalar
 Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value. More...
 
int InputLenght
 Number of input neurons. More...
 
int OutputLength
 Number of output neurons. More...
 
bool EnableArchitectureTest
 Flag for enabling test in architecture of ANN. More...
 
int NumHiddenLayersNum
 Number of hidden layers in neural network. More...
 
int NumHiddenNeuronsFirstMin
 Minimum number of hidden neurons in first hidden layer. More...
 
int NumHiddenNeuronsFirstMax
 Maximum number of hidden neurons in first hidden layer. More...
 
int NumHiddenNeuronsFirstNum
 Number of numbers of hidden neurons in first hidden layer. More...
 
int[] NumHiddenNeuronsFirstValues
 Values for number of hidden neurons in the first hidden layer. More...
 
int NumHiddenNeuronsSecondMin
 Minimum number of hidden neurons in second hidden layer. More...
 
int NumHiddenNeuronsSecondMax
 Maximum number of hidden neurons in second hidden layer. More...
 
int NumHiddenNeuronsSecondNum
 Number of numbers of hidden neurons in second hidden layer. More...
 
int[] NumHiddenNeuronsSecondValues
 Values for number of hidden neurons in the second hidden layer. More...
 
int NumHiddenNeuronsThirdMin
 Minimum number of hidden neurons in third hidden layer. More...
 
int NumHiddenNeuronsThirdMax
 Maximum number of hidden neurons in third hidden layer. More...
 
int NumHiddenNeuronsThirdNum
 Number of numbers of hidden neurons in third hidden layer. More...
 
int[] NumHiddenNeuronsThirdValues
 Values for number of hidden neurons in the third hidden layer. More...
 

Protected Member Functions

override void CopyFromPlain (NeuralTrainingLimits trainingLimits)
 Copies the specified training limits to the current DTO. More...
 
override void CopyToPlain (ref NeuralTrainingLimits trainingLimits)
 Copies contents of the current DTO to the specified training limits object. More...
 
- Protected Member Functions inherited from IG.Lib.SerializationDto< NeuralTrainingLimits >
 SerializationDto ()
 

Additional Inherited Members

- Static Public Member Functions inherited from IG.Lib.SerializationDto< NeuralTrainingLimits >
static ObjectType CopyToObjectReturned< DtoType, ObjectType > (DtoType dto, ObjectType obj)
 Replacement for CopyToObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which object state is copied. More...
 
static void CopyToObject< DtoType, ObjectType > (DtoType dto, ref ObjectType obj)
 Copies object state form the specified DTO (data transfer object) to the specified object. More...
 
static DtoType CopyFromObjectReturned< DtoType, ObjectType > (ObjectType obj, DtoType dto)
 Replacement for CopyFromObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which object state is copied. More...
 
static void CopyFromObject< DtoType, ObjectType > (ObjectType obj, ref DtoType dto)
 Copies object state form the specified object to the corresponding DTO (data transfer object). More...
 
static ObjectType[] CopyArrayToObjectReturned< DtoType, ObjectType > (DtoType[] tabDto, ObjectType[] tabObj)
 Replacement for CopyArrayToObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyArrayToObject< DtoType, ObjectType > (DtoType[] tabDto, ref ObjectType[] tabObj)
 Copies array of DTOs (Data Transfer Objects) to an array of appropriate objects. More...
 
static DtoType[] CopyArrayFromObjectReturned< DtoType, ObjectType > (ObjectType[] tabObj, DtoType[] tabDto)
 Replacement for CopyArrayFromObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyArrayFromObject< DtoType, ObjectType > (ObjectType[] tabObj, ref DtoType[] tabDto)
 Copies array of objects to an array of DTOs. More...
 
static List< ObjectType > CopyListToObjectReturned< DtoType, ObjectType > (DtoType[] tabDto, List< ObjectType > listObj)
 Replacement for CopyListToObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyListToObject< DtoType, ObjectType > (DtoType[] tabDto, ref List< ObjectType > listObj)
 Copies array of DTOs (Data Transfer Objects) to a list of appropriate objects. More...
 
static DtoType[] CopyListFromObjectReturned< DtoType, ObjectType > (List< ObjectType > tabObj, DtoType[] tabDto)
 Replacement for CopyArrayFromObject for cases where object can not be passed by reference. The returned object must be assigned to object (property, list element, etc.) to which data is copied. More...
 
static void CopyListFromObject< DtoType, ObjectType > (List< ObjectType > tabObj, ref DtoType[] tabDto)
 Copies array of objects to a list of DTOs. More...
 

Detailed Description

Transfer Object (DTO) for neural network training limits.

$A Igor Jul10 Aug12; Tako78 Aug12;

Member Function Documentation

override NeuralTrainingLimits IG.Num.NeuralTrainingLimitsDto.CreateObject ( )
inline

Creates and returns a new object of the corresponding type.

override void IG.Num.NeuralTrainingLimitsDto.CopyFromPlain ( NeuralTrainingLimits  trainingLimits)
inlineprotected

Copies the specified training limits to the current DTO.

Parameters
trainingLimitsObject that is copied to the current DTO.

References IG.Num.NeuralTrainingLimits.AlphaMax, IG.Num.NeuralTrainingLimits.AlphaMin, IG.Num.NeuralTrainingLimits.AlphaNum, IG.Num.NeuralTrainingLimits.EnableArchitectureTest, IG.Num.NeuralTrainingLimits.EnableRangeTolerance, IG.Num.NeuralTrainingLimits.EpochBundle, IG.Num.NeuralTrainingLimits.InputLenght, IG.Num.NeuralTrainingLimits.InputSafetyFactorMax, IG.Num.NeuralTrainingLimits.InputSafetyFactorMin, IG.Num.NeuralTrainingLimits.InputSafetyFactorNum, IG.Num.NeuralTrainingLimits.LearningRateMax, IG.Num.NeuralTrainingLimits.LearningRateMin, IG.Num.NeuralTrainingLimits.LearningRateNum, IG.Num.NeuralTrainingLimits.MaxEpochs, IG.Num.NeuralTrainingLimits.MomentumMax, IG.Num.NeuralTrainingLimits.MomentumMin, IG.Num.NeuralTrainingLimits.MomentumNum, IG.Num.NeuralTrainingLimits.NumHiddenLayersNum, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstMax, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstMin, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstNum, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsFirstValues, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondMax, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondMin, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondNum, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsSecondValues, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdMax, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdMin, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdNum, IG.Num.NeuralTrainingLimits.NumHiddenNeuronsThirdValues, IG.Num.NeuralTrainingLimits.OutputLength, IG.Num.NeuralTrainingLimits.OutputSafetyFactorMax, IG.Num.NeuralTrainingLimits.OutputSafetyFactorMin, IG.Num.NeuralTrainingLimits.OutputSafetyFactorNum, IG.Num.NeuralTrainingLimits.ToleranceMax, IG.Num.NeuralTrainingLimits.ToleranceMaxRelativeToRange, IG.Num.NeuralTrainingLimits.ToleranceMaxRelativeToRangeScalar, IG.Num.NeuralTrainingLimits.ToleranceRms, IG.Num.NeuralTrainingLimits.ToleranceRmsRelativeToRange, and IG.Num.NeuralTrainingLimits.ToleranceRmsRelativeToRangeScalar.

override void IG.Num.NeuralTrainingLimitsDto.CopyToPlain ( ref NeuralTrainingLimits  trainingLimits)
inlineprotected

Copies contents of the current DTO to the specified training limits object.

Parameters
trainingLimitsObject that the current DTO content is copied to.

Member Data Documentation

double IG.Num.NeuralTrainingLimitsDto.LearningRateMin

Minimum limit for learning rate.

double IG.Num.NeuralTrainingLimitsDto.LearningRateMax

Maximum limit for learning rate.

int IG.Num.NeuralTrainingLimitsDto.LearningRateNum

Number of learning rates.

double IG.Num.NeuralTrainingLimitsDto.MomentumMin

Minimum limit for momentum.

double IG.Num.NeuralTrainingLimitsDto.MomentumMax

Maximum limit for momentum.

int IG.Num.NeuralTrainingLimitsDto.MomentumNum

Number of momentums.

double IG.Num.NeuralTrainingLimitsDto.AlphaMin

Minimum limit for alpha value.

double IG.Num.NeuralTrainingLimitsDto.AlphaMax

Maximum limit for alpha value.

int IG.Num.NeuralTrainingLimitsDto.AlphaNum

Number of alpha values.

double IG.Num.NeuralTrainingLimitsDto.InputSafetyFactorMin

Minimum limit for input safety factor value.

double IG.Num.NeuralTrainingLimitsDto.InputSafetyFactorMax

Maximum limit for input safety factor value.

int IG.Num.NeuralTrainingLimitsDto.InputSafetyFactorNum

Number of input safety factor values.

double IG.Num.NeuralTrainingLimitsDto.OutputSafetyFactorMin

Minimum limit for output safety factor value.

double IG.Num.NeuralTrainingLimitsDto.OutputSafetyFactorMax

Maximum limit for output safety factor value.

int IG.Num.NeuralTrainingLimitsDto.OutputSafetyFactorNum

Number of output safety factor values.

int IG.Num.NeuralTrainingLimitsDto.MaxEpochs

Maximum number of epochs performed in training.

int IG.Num.NeuralTrainingLimitsDto.EpochBundle

Number of epochs in boundle.

bool IG.Num.NeuralTrainingLimitsDto.EnableRangeTolerance

Flag for enabling toelrance that represent a percentage of the output range.

VectorDtoBase IG.Num.NeuralTrainingLimitsDto.ToleranceRms

Tolerance over RMS error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.

$A Tako78 Jul12;; Igor Jul12;

VectorDtoBase IG.Num.NeuralTrainingLimitsDto.ToleranceRmsRelativeToRange

Relative tolerances on RMS errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRange
double IG.Num.NeuralTrainingLimitsDto.ToleranceRmsRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceRmsRelativeToRangeScalar

Scalar through which all components of the Relative tolerances on RMS errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceRmsRelativeToRangeScalar
VectorDtoBase IG.Num.NeuralTrainingLimitsDto.ToleranceMax

Tolerance on maximal error of outputs over training points. Training will continue until error becomes below tolerance or until maximal number of epochs is reached. If less or equal than 0 then this tolerance is not taken into account.

$A Tako78 Jul12;

VectorDtoBase IG.Num.NeuralTrainingLimitsDto.ToleranceMaxRelativeToRange

Relative tolerances on max. abs. errors of outputs over training points, relative to the correspoinding ranges of output data.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRange
double IG.Num.NeuralTrainingLimitsDto.ToleranceMaxRelativeToRangeScalar = NeuralTrainingParameters.DefaultToleranceMaxRelativeToRangeScalar

Scalar through which all components of the Relative tolerances on max. abs. errors of outputs can be set to the same value.

See also
NeuralApproximatorBase.ToleranceMaxRelativeToRangeScalar
int IG.Num.NeuralTrainingLimitsDto.InputLenght

Number of input neurons.

int IG.Num.NeuralTrainingLimitsDto.OutputLength

Number of output neurons.

bool IG.Num.NeuralTrainingLimitsDto.EnableArchitectureTest

Flag for enabling test in architecture of ANN.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenLayersNum

Number of hidden layers in neural network.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsFirstMin

Minimum number of hidden neurons in first hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsFirstMax

Maximum number of hidden neurons in first hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsFirstNum

Number of numbers of hidden neurons in first hidden layer.

int [] IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsFirstValues

Values for number of hidden neurons in the first hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsSecondMin

Minimum number of hidden neurons in second hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsSecondMax

Maximum number of hidden neurons in second hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsSecondNum

Number of numbers of hidden neurons in second hidden layer.

int [] IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsSecondValues

Values for number of hidden neurons in the second hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsThirdMin

Minimum number of hidden neurons in third hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsThirdMax

Maximum number of hidden neurons in third hidden layer.

int IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsThirdNum

Number of numbers of hidden neurons in third hidden layer.

int [] IG.Num.NeuralTrainingLimitsDto.NumHiddenNeuronsThirdValues

Values for number of hidden neurons in the third hidden layer.


The documentation for this class was generated from the following file: