

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems

1

 Simplex algorithms for nonlinear
constraint optimization problems

Technical report
Revision 0

 By Igor Grešovnik

Ljubljana, 2009

0

1

2

1

2

-3

-2

-1

0

1

0

1

2 p1

1

2

p2

p3

Implementation remarks in this document refer to IoptLib (Investigative Optimization

Library).

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems

2

Contents:

1 Introduction...1

2 Nelder-Mead Simplex Method for Unconstrained Minimization ...1

3 Simplex Methods for Inequality Constraints ...6

3.1 Adaptation by comparison relations .. 7
3.1.1 Different definitions of comparison functions .. 8

3.2 Addition of penalty terms to the objective function.. 11
3.2.1 Adding discontinuous jump to the objective function on the level set.. 11
3.2.2 Exact penalty functions... 12
3.2.3 Adaptive penalty algorithm... 23

3.3 Strict consideration of bound constraints .. 24

3.4 Implementation remarks on penalty terms and bound constraints 26
3.4.1 Basic tools for handling bound constraints ... 28
3.4.2 Penalty generating functions... 28
3.4.3 Conversion of bound constraints to ordinary constraints.. 28

4 Simplex methods for equality constraints ..28

5 Accelerating convergence with response approximation ..28

6 Appendix..29
6.1.1 Relations ... 30

7 Sandbox (this is not part of this report) ...1

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
1. Introduction

1

1 INTRODUCTION

This document describes variants of the modified Nelder-Mead simplex method adapted for

solution of constrained non-linear optimization problems.

We will consider the nonlinear optimization problems of the form

minimise () nf RI, ∈xx

subject to () 0,ic i I≤ ∈x (1)

and () 0,jc j E= ∈x ,

where , 1, 2, ...,k k kl x u k n≤ ≤ = .

Function f is called the objective function, ci and cj are called constraint functions and lk and

uk are called upper and lower bounds. The second and third line of the equation are referred to as
inequality and equality constraints, respectively (with I and E being the corresponding inequality
and equality index sets). We will collectively refer to f, ,ic i I∈ and ,ic i E∈ as constraint

functions. lk and uk are the lower and upper bounds for the optimization variable.

2 NELDER-MEAD SIMPLEX METHOD FOR UNCONSTRAINED
MINIMIZATION

One minimization method that does not belong within the context of the subsequent text is

the simplex method[2], [3],[6]. It has been known since the early sixties and could be classed as
another heuristic method since it is not based on a substantial theoretical background.

The simplex method neither uses line searches nor is based on minimization of some

simplified model of the objective function, and therefore belongs to the class of direct search
methods. Because of this the method does not compare well with other described methods with
respect to local convergence properties. On the other hand, for the same reason it has some other
strong features. The method is relatively insensitive to numerical noise and does not depend on
some other properties of the objective function (e.g. convexity) since no specific continuity or other
assumptions are incorporated in its design. It merely requires the evaluation of function values. Its
performance in practice can be as satisfactory as any other non-derivative method, especially when

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
2. Nelder-Mead Simplex Method for Unconstrained Minimization

2

high accuracy of the solution is not required and the local convergence properties of more
sophisticated methods do not play so important role. In many cases it does not make sense to
require highly accurate solutions of optimization problems, because the obtained results are
inevitably inaccurate with respect to real system behavior due to numerical modeling of the system
(e.g. discretization and round-off errors or inaccurate physical models). These are definitely good
arguments for considering practical use of the method in spite of the lack of good local convergence
results with respect to some other methods.

The simplex method is based on construction of an evolving pattern of n+1 points in nRI

(vertices of a simplex). The points are systematically moved according to some strategy such that
they tend towards the function minimum. Different strategies give rise to different variants of the
algorithm. The most commonly used is the Nelder-Mead algorithm described below. The algorithm
begins by choice of n+1 vertices of the initial simplex (() ()1

1
1

1 ,..., +nxx) so that it has non-zero volume.

This means that all vectors connecting a chosen vertex to the reminding vertices must be linearly
independent, e.g.

 () ()()∑
=

+ ≠−⇒≠∃
n

i
iii

1

1
1

1
1 00 xxλλ .

If we have chosen ()1

1x , we can for example obtain other vertices by moving, for some
distance, along all coordinate directions. If it is possible to predict several points that should be
good according to experience, it might be better to set vertices to these points, but the condition
regarding independence must then be checked.

Once the initial simplex is constructed, the function is evaluated at its vertices. Then one or

more points of the simplex are moved in each iteration, so that each subsequent simplex consists of
a better set of points:

Algorithm 2.1: The Nelder-Mead simplex method.

After the initial simplex is chosen, function values in its vertices are evaluated:
() ()() 1...,,1,11 +== niff ii x .

Iteration k is then as follows:
1. Ordering step: Simplex vertices are first reordered so that () () ()k

n
kk fff 121 ... +≤≤≤ , where

() ()()k
i

k
i ff x= .

2. Reflection step: The worst vertex is reflected over the centre point of the best n vertices

(() ()
∑

=

=
n

i

k
i

k

n 1

1
xx), so that the reflected point ()k

rx is

 () () () ()()k

n
kkk

r 1+−+= xxxx

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
2. Nelder-Mead Simplex Method for Unconstrained Minimization

3

Evaluate () ()()k
r

k
r ff x= . If () () ()r

n
k

r
k fff <≤1 , accept the reflected point and go to 6.

3. Expansion step: If () ()kk
r ff 1< , calculate the expansion

 () () () ()()kk

r
kk

e xxxx −+= 2

and evaluate () ()()k

e
k

e ff x= . If () ()k
r

k
e ff < , accept ()k

ex and go to 6. Otherwise accept ()k
rx and

go to 6.
4. Contraction step: If () ()k

n
k

r ff ≥ , perform contraction between ()kx and the better of ()k
n 1+x

and ()k
rx . If () ()k

n
k

r ff 1+< , set

 () () () ()()kk
r

kk
c xxxx −+=

2

1

(this is called the outside contraction) and evaluate () ()()k

c
k

c ff x= . If () ()k
r

k
c ff ≤ , accept ()k

cx

and go to 6.
If in contrary () ()k

n
k

r ff 1+≥ , set

 () () () ()()k
n

kkk
c 12

1
+−−= xxxx

(inside contraction) and evaluate ()k

cf . If () ()k
n

k
c ff 1+< , accept ()k

cx and go to 6.

5. Shrink step: Move all vertices except the best towards the best vertex, i.e.

 () () () ()() 1...,,2,
2

1
11 +=−+= nikk

i
kk

i xxxv ,

and evaluate () ()() 1...,,2,' +== niff k

i
k

i v . Accept ()k
iv as new vertices.

6. Convergence check: Check if the convergence criterion is satisfied. If so, terminate the
algorithm, otherwise start the next iteration.

Figure 1 illustrates possible steps of the algorithm. A possible situation of two iterations

when the algorithm is applied is shown in Figure 2. The steps allow the shape of the simplex to be
changed in every iteration, so the simplex can adapt to the surface of f. Far from the minimum the
expansion step allows the simplex to move rapidly in the descent direction. When the minimum is
inside the simplex, contraction and shrink steps allow vertices to be moved closer to it.

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
2. Nelder-Mead Simplex Method for Unconstrained Minimization

4

x1

xe

x3

xr

xr

x3 x3

xr

xc

xc

x3

Figure 1: Possible steps of the simplex algorithm in two dimensions (from left to right):
reflection, expansion, outside and inside contraction, and shrink.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x3
(1)

x2
(1)= x3

(2)

xr
(2) x1

(1)= x2
(2)

xe
(3)

xe
(2)= x1

(2)

xr
(3)

Figure 2: Example of evolution of the simplex.

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
2. Nelder-Mead Simplex Method for Unconstrained Minimization

5

There are basically two possibilities for the convergence criterion. Either that function
values at vertices must become close enough or the simplex must becomes small enough. It is
usually best to impose both criteria, because either of them alone can be misleading.

It must be mentioned that convergence to a local minimum has not been proved for the

Nelder-Mead algorithm. Examples have been constructed for which the method does not converge
for certain choices of the initial guess[2]. However, the situations for which this was shown are quite
special and unlikely to occur in practice. Another theoretical argument against the algorithm is that
it can fail because the simplex collapses into a subspace, so that vectors connecting its vertices
become nearly linearly dependent. Investigation of this phenomenon indicates that such behavior is
related to cases when the function to be minimized has highly elongated contours (i.e. ill
conditioned Hessian). This is also a problematic situation for other algorithms.

The Nelder-Mead algorithm can be easily adapted for constrained optimization. One

possibility is to add a special penalty term to the objective function, e.g.

 () () () () ()1'
1n i j

i I i I

f f f c c+
∈ ∈

= + − +∑ ∑x x x x , (2)

where ()1

1+nf is the highest value of f in the vertices of the initial simplex. Since subsequent iterates

generate simplices with lower values of the function at vertices, the presence of this term guarantees
that whenever a trial point in some iteration violates any constraints, its value is greater than the
currently best vertex. The last two sums give a bias towards the feasible region when all vertices are
infeasible. The derivative discontinuity of the terms with absolute value should not be problematic
since the method is not based on any model, but merely on comparison of function values. A
practical implementation is similar to the original algorithm. f is first evaluated at the vertices of the
initial simplex and the highest value is stored. Then the additional terms in (2) are added to these
values, and in subsequent iterates f is replaced by f’ .

Another variant of the simplex method is the multidirectional search algorithm. Its iteration

consists of similar steps to the Nelder-Mead algorithm, except that all vertices but the best one are
involved in all operations. There is no shrink step and the contraction step is identical to the shrink
step of the Nelder-Mead algorithm. Possible steps are shown in Figure 3. The convergence proof
exists for this method[2], but in practice it performs much worse than the Nelder-Mead algorithm.
This is due to the fact that more function evaluations are performed at each iteration and that the
simplex can not be adapted to the local function properties as well as the former algorithm. The
shape of the simplex can not change, i.e. angles between it edges remain constant (see Figure 3).
The multidirectional search algorithm is better suited to parallel processing because n function
evaluations can always be performed simultaneously.

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

6

x1

x3

x2

xr
(3)

xr
(2)

x1

x3

x2

xr
(3)

xr
(2)

x1 xc
(2)

xc
(3)

x3

x2

Figure 3: possible steps in the multidirectional search algorithm: reflection, expansion, and
contraction.

3 SIMPLEX METHODS FOR INEQUALITY CONSTRAINTS

We define the feasible set Ψ as the set of points that satisfy all constraints:

 () (){ }; 0 0i jc i I c j EΨ = ≤ ∀ ∈ ∧ = ∀ ∈x x x . (3)

We will denote by x* the solution of the problem (1). x* is a local solution (optimum) of the

problem (1) if there exists a neighborhood Ω of x* such that

 *≥ ∀ ∈ Ψ ∩ Ωx x x . (4)

We will define the constraint residual

 ()
()

() ()
()

0; 0

; 0

;

i

i i i

i

i I c

r c i I c

c i E

 ∈ ∧ ≤
= ∈ ∧ >
 ∈

x

x x x

x

 . (5)

We will denote the sum of residuals as

 () ()i
i I E

S r
∈ ∪

= ∑x x (6)

And the maximal residual

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

7

 () ()max i
i I E

R r
∈ ∪

=x x (7)

Further, we will define the number of violated constraints as

 () ()
()

1; 0

0; 0

i

r
i I E i

r
N

r∈ ∪

>= 
=

∑
x

x
x

 (8)

3.1 Adaptation by comparison relations

In the simplex method, only comparison of the objective function at different parameters is

performed. In fact, no predictions are made based on actual values or gradients of the objective
function, i.e. only the comparison relation “is greater than” is used.

The idea is then to adapt the method for constraint problems by introduction of the “is better

than” in such a way that it takes into account constraints. We will denote the relation as

 1 2<x x% , (9)

which will read x1 is better than x2.

We impose the following common rules:

 () () ()
1 2 2 1

1 2 2 2 2 2

< ⇔ >
¬ < ∧ ¬ < ⇔ =
x x x x

x x x x x x

% %

% % %
, (10)

where 1 2>x x% means x1 is worse than x2. We also define the equivalence relation such that 1 2=x x%

means x1 is equally good than x2 and 1 2≥x x% means x1 is worse or equally good than x2, etc.

In algorithm code, these relations will be reflected in implementation of the comparison function
cmp(x1, x2), which will be used for comparison of the simplex apices:

 ()
1 2

1 2 1 2

1 2

1;

, 0;

1;

cmp

− <
= >
 =

x x

x x x x

x x

%

%

%

 . (11)

The first condition for the ordering relation is that

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

8

 * ≤ ∀ ∈Ωx x x% , (12)

Where Ω is the neighborhood from (4). This will be satisfied if the following is valid:

 () ()
1 2 1 2

1 2 1 2 1 2f f

∈ Ψ ∧ ∉ Ψ⇒ <
∈ Ψ ∧ ∈ Ψ ∧ < ⇒ <

x x x x

x x x x x x

%

%
 . (13)

The second line also implies

() ()1 2 1 2 1 2f f∈ Ψ ∧ ∈ Ψ ∧ = ⇒ =x x x x x x%

This is the primary condition for the comparison relation. In order to apply the comparison

relation in the minimization algorithm, we will have to require that some additional conditions are
satisfied.

In particular, it is desired that for any two point x0 there exist a local solution x* of the

problem (1) such that a descent path connecting x and x* exists:

 ()

()
()

[] [] () ()()
[] []

() ()()()

*

*

*

1 2 2 1 2 1

1 2

1 2 1 2

0

1
, ,

0,1 , 0,1

0,1 , 0,1

0 0

local optimum

t
t t t t t t

t t

t t t tσ ε ε σ




=
 =

∀ ∃ ∀ ∈ ∈ > ⇒ ≤

∀ ∈ ∈

 ∀ > ∃ > − < ⇒ − <


x

s x

s x
x x s

s s

s s

%
 . (14)

We must specify the rules additional to (13) such that relations ≤% and ≥% will be precisely

defined and (14) will be satisfied for regular cases.

3.1.1 Different definitions of comparison functions

3.1.1.1 Comparison based on sum of residuals

() ()
() () () ()

1 2 1 2

1 2 1 2 1 2

S S

S S f f

< ⇒ <

= ∧ < ⇒ <

x x x x

x x x x x x

%

%
 . (15)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

9

 ()
() ()() () () () ()()

() () () ()
1 2 1 2 1 2

1 2 1 2 1 2

1;

, 0;

1;
S

S S S S f f

cmp S S f f

otherwise

− < ∨ = ∧ <
= = ∧ =



x x x x x x

x x x x x x (16)

3.1.1.2 Comparison based on maximal residual

() ()
() () () ()

1 2 1 2

1 2 1 2 1 2

R R

R R f f

< ⇒ <

= ∧ < ⇒ <

x x x x

x x x x x x

%

%
 . (17)

The second line also implies

() ()1 2 1 2 1 2f f∈ Ψ ∧ ∈ Ψ ∧ < ⇒ <x x x x x x% .

 ()
() ()() () () () ()()

() () () ()
1 2 1 2 1 2

1 2 1 2 1 2

1;

, 0;

1;
R

R R R R f f

cmp R R f f

otherwise

− < ∨ = ∧ <
= = ∧ =



x x x x x x

x x x x x x (18)

3.1.1.3 Comparison based on number of violated constraints and sum of residuals

() ()
() () () ()
() () () () () ()

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

r r

r r

r r

N N

N N S S

N N S S f f

< ⇒ <

= ∧ < ⇒ <

= ∧ = ∧ < ⇒ <

x x x x

x x x x x x

x x x x x x x x

%

%

%

 . (19)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

10

 ()

() ()()
() ()()

() ()() () () () ()()
() () () () () ()

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1;

,

0;

1;

r r

r r

NS

r r

N N

N N

cmp S S S S f f

N N S S f f

otherwise

− < ∨


= ∧
= < ∨ = ∧ <
 = ∧ = ∧ =



x x

x x

x x x x x x x x

x x x x x x

 (20)

3.1.1.4 Comparison based on number of violated constraints and maximal residual

() ()
() () () ()
() () () () () ()

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2

r r

r r

r r

N N

N N R R

N N R R f f

< ⇒ <

= ∧ < ⇒ <

= ∧ = ∧ < ⇒ <

x x x x

x x x x x x

x x x x x x x x

%

%

%

 . (21)

 ()

() ()()
() ()()

() ()() () () () ()()
() () () () () ()

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1;

,

0;

1;

r r

r r

NR

r r

N N

N N

cmp R R R R f f

N N R R f f

otherwise

− < ∨


= ∧
= < ∨ = ∧ <
 = ∧ = ∧ =



x x

x x

x x x x x x x x

x x x x x x

 (22)

This function can be possibly implemented as follows:

int cmpNR(analysisdata pt1,analysisdata pt2)
{
 int N1,N2;
 double R1,R2,f1,f2;
 N1=Nr(pt1); N2=Nr(pt2);
 if (N1<N2)
 return -1;
 if (N1>N2)
 return 1;
 R1=R(pt1); R2=R(pt2);
 if (R1<R2)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

11

 return -1;
 if (R1>R2)
 return 1;
 f1=f(pt1); f2=f(pt2);
 if (f1<f2)
 return -1;
 if (f1>f2)
 return 1;
 return 0;
}

In the above code, pt1 and pt2 are data structures that contain data calculated within direct

analyses at two parameter sets, Nr(pt) is the function that returns the number of violated
constraints according to the analysis data that is its argument, R(pt) returns maximal constraint
residuum and f(pt) returns the value of the objective function that is stored on its argument pt.

3.2 Addition of penalty terms to the objective
function

3.2.1 Adding discontinuous jump to the objective function on
the level set

Because only comparison of the objective function at different parameters is performed by

the Nelder-Mead simplex method, the method is relatively insensitive on discontinuity of the
objective function. We can add jump discontinuities to the objective function, and this does not
affect the efficiency of the method.

Let us denote fm(x) the modified objective function with added jump discontinuities. As long

as

() () () ()
() () () ()

1 2 1 2

1 2 1 2

m m

m m

f f f f

f f f f

< ⇒ <

= ⇒ =

x x x x

x x x x
, (23)

the minimum of fm is the same as the minimum of f. The above relation is valid if we define the
modified objective function in the following way (Figure 4):

 () ()
()

;
; 0

;
m

f c
f h

f h c

<= >
+ ≥

x x
x

x x
 . (24)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

12

This function is obtained from f by adding to it a positive constant within the following domain:

 (){ }| f c+Ω = ≥x x . (25)

Edge of this domain +∂ Ω is the level hypersurface (isosurface in 3D, isoline in 2D) of f.

-2

-1

0

1

2-1

-0.5

0

0.5

1

0

1

2

-2

-1

0

1

-2

-1

0

1

2-1

-0.5

0

0.5

1

0

1

2

-2

-1

0

1

 fm
 (x) f (x)

Figure 4: Original and modified objective function.

Modification of f according to (24) does not change performance of the Nelder-Mead

algorithm. It is obvious (according to algorithm description in Section 2) that the path of the
algorithm can be changed only if the result of comparisons of function values in any pair of points
is changed. However, this is not the case with fm(x) for which relation (23) holds.

3.2.2 Exact penalty functions

The fact that modification (24) that introduces a jump discontinuity does not change the

performance of the algorithm indicates that the method could be efficiently modified for solution of
constraint problems by forming a discontinuous exact penalty function. Exact penalty function is
obtained by adding a penalty term such that a minimum of the obtained penalty function
corresponds to the constraint minimum of the original problem. Solution of the original problem
can then be obtained by finding a minimum of the penalty function.

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

13

When only inequality constraints are present, the penalty function can be formed by addition
of penalty terms for each constraint in the following way:

 () () ()(); ;p p p i p
i I

f f h c
∈

= +∑x p x x p , (26)

where the penalty terms can be defined for example as

 { }() 0; 0
, , ; 0 0

; 0
i

p i
i i

c
h c k h h k

h k c c

≤
= ≥ ∧ ≥ + >

 . (27)

Non-negative penalty parameter k and h must be large enough if we want that fp represents

an exact penalty function. In the sequel, we define more precisely the conditions that the penalty
function is exact penalty function.

We usually require

 ()0; 0p ph =p . (28)

It is clear that in the infeasible region where (), 0ii I c∀ ∈ >x , the derivative of h with respect to

the violated constraint must be positive, i.e.

();

0 0
p ph c

c
c

∂
> ⇒ >

∂
p

 . (29)

However, this is not a sufficient condition that the penalty function has a local minimum in the
solution of the constrained problem. The derivative must be large enough in order to compensate for
eventual falling of the objective function as the constraint function grows. What one needs to
achieve is that in the infeasible region, the dot product of the gradient of the penalty function with
the gradient of any constraint function belonging to a violated constraint, is positive.

The sufficient condition that the penalty function is exact (i.e. it has a local minimum in the

solution of the original constrained optimization problem) is the following: There must exist a
neighborhood ε of the solution *x such that in each point of the neighborhood, the gradient of the
penalty function has positive dot product with gradients of all constraint functions which are greater
than zero (i.e. belong to violated constraints) in that point. In this way, we can find a neighborhood
of *x such that a descent path exists from any point in this neighborhood to *x . The condition can
be expressed in the following way:

 () () ()
, ,

0 ; , 0i p p i

i I

c f c

ε∀ ∈ ∀ ∈

> ⇒ ∇ ∇ >x

x

x x p x
 . (30)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

14

The above equation says that the directional gradient of the penalty function must be positive in the
direction of the gradient of any violated constraint. From (26) we have

 () () ()
()()

();
;

i

p
p p i

i I c c

h c
f f c

c∈ =

∂
∇ = ∇ + ∇

∂∑x

x

p
x p x x (31)

Equation (30) defines the condition that the penalty function has a local minimum that

corresponds to the solution of the original constraint optimization problem. From the algorithmic
point of view this is not sufficient. We want to ensure that minimization algorithm applied to the
penalty function will actually yield the local minimum that corresponds to a local solution of the
unconstrained problem (since the penalty function can have several local minima or can even be
unbounded below). In our case we will apply the unconstraint Nelder-Mead simplex algorithm, but
the same reasoning applies to application of other algorithms. It is intuitively obvious that if the
region ε on which (30) holds is larger, the applied minimization algorithm will converge to the
solution of the original problem from a larger region. Running the algorithm from a starting point
that is far from the region where (30) holds will more likely cause it to diverge (in the case that the
penalty function is unbounded below) or converge to a local minimum that is not a solution of the
original problem.

The best is if the condition (30) holds everywhere. Considering equations (30) and (31), in

order to achieve that, the function hp(c;…) must grow sufficiently fast with its c. In this way, the
second term in (31) can compensate for eventual negative projection of the gradient of the objective
function on the gradients of violated constraints. However, making hp(c;…) grow too fast close to
c=0 would introduce ill-conditioning in the minimization of the penalty function. We must therefore
look for a suitable compromise, which is not trivial in some cases.

While addition of discontinuous term of the form (24) does not affect the performance of the

Nelder-Mead simplex method, addition of penalty terms of the form (26) can significantly reduce
its efficiency. This is because the penalty terms limit the space where the simplex moves, and the
simplex makes more rejected trials when hitting sharp growth of the penalty function at constraint
boundaries.

A disadvantage of the penalty function generated by hp of the form (27) is that it is difficult

to fulfill the condition (30) on a large sub-domains of the infeasible domain in the cases where the
objective function falls progressively or when the constraint functions grow regressively with the
distance from the zero level hyper-surfaces of constraint functions. This can be alleviated by
making hp grow progressively with increasing positive argument my adding exponential or higher
order monomial terms, e.g.

{ }() 2 3 4

0; 0

, , ; 0 0
exp ; 0

4 8 16 64

i

p i i i i i
i i

c

h c k h h kc c c c
h k c c

≤


 = ≥ ∧ ≥        + + + + + >                  

 . (32)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

15

Increasing denominators take care that higher order terms contribute significantly only when

the constraint functions are large enough, which makes minimization of the penalty function less ill
conditioned. However, this is not so important when the Nelder-Mead simplex method is used for
minimization of the penalty function, because this method only makes comparisons of function
values and does not make use of higher order function information.

3.2.2.1 Examples: discontinuous exact penalty function

In order to illustrate addition of a penalty term, we consider the following one dimensional

problem:

minimise ()
2

34
x

f x e
−

= −

subject to ()1 1 0xc x e−≤ − ≤ (33)

We form penalty functions according to (26) and (27). Results are shown in Figure 5.

a)

-2 -1 0 1 2

-6

-4

-2

0

2

c1 (x)

f (x)

constrained minimum

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

16

b)

-2 -1 0 1 2

2

4

6

8
fp (x, h, 8)

fp (x, h, 4)

fp (x, h, 2)

fp (x, h, 1)

fp (x, h, 0.5)

f (x)
fm (x,h,k)

constrained minimum

c)

-2 -1 0 1 2

1

2

3

4

5

6

7 fp (x, h, 8)

fp (x, h, 4)

fp (x, h, 2)

fp (x, h, 1)

fp (x, h, 0.5)

f (x)
fm (x,h,k)

constrained minimum

Figure 5: Problem (33): a) problem objective function and constraint function, b) family of
penalty functions of form (27) for different penalty parameters (h=0.5 is constant) and c) family
of penalty functions at the same parameters k and at h=0.

The above example has two features that are somehow problematic for penalty methods.

Firstly, the objective function progressively falls in the infeasible region (x>0) as the violation of
constraints (i.e. value of the constraint function) grows. Secondly, the constraint function falls
regressively, i.e. its second derivative is non-zero. This means that the function hp that defines the
penalty terms should grow progressively enough in order to compensate for progressive falling of
the objective function and regressive growth of the constraint functions. Since we have chosen a

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

17

simple linear form of hp, there will always exist a subset of infeasible region where the value of the
penalty function will be smaller than its value in the solution of the constraint problem. The
difficulties related to these problematic features can be alleviated by using different (progressively
growing) forms of hp such as (32).

It can be seen from the figure that for small k and h=0 the penalty function does not have a

local minimum in the solution of the constrained problem. If h>0 then the penalty function does
have a local minimum in the solution of the constrained problem even for k=0. However, for
minimization algorithms it will be difficult to locate this minimum because they can easily jump
over it. For large k, the subset of the infeasible region for which condition (30) holds increases.
However, the sharpness of the edge that the penalty function forms in the solution of the original
problem also increases, and this feature usually affects the efficiency of the applied minimization
algorithm. For the Nelder-Mead algorithm this feature is not problematic in one dimension, but can
be in more dimensions where zero contours of constraints form a sharp cone with its tip located in
the problem solution.

The next example does not contain the problematic features of the previous one:

minimise ()
2

23 1

10

x
f x e x

−
= +

subject to () 2
1 0.2c x x x= + (34)

The problem and formation of penalty functions is illustrated in Figure 6.

a)

-2 -1 0 1 2

-1

0

1

2

3

4

c1 (x)

f (x)

constrained minimum

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

18

b)

-2 -1 0 1 2

2

4

6

8

10

12

fp (x, h, 4)

fp (x, h, 2)

fp (x, h, 1)

fp (x, h, 0.5)

f (x)
fm (x,h,k)

constrained minimum

Figure 6: Problem (34): a) problem objective function and constraint function and b) family
of penalty functions of form (27) for different penalty parameters (h=0 is constant).

Next we consider the following two dimensional example (Figure 7):

minimise () () ()2 2
, 1 2 1f x y x x y= + + + +

subject to () 3
1 , 0.2 0.2c x y x x y= − − + (35)

and () 3
1 , 0.2 0.2c x y x x y= − − −

Figure 8 and Figure 9 show penalty functions of the form (27) for this problem for different

values of parameter k.

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

19

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1
f (x)

min f (x)

c1 (x)=0

c2 (x)=0
constrained
minimum

Figure 7: Illustration of problem (33).

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1 fp (x ; h=0, k=1)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

20

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1 fp (x ; h=0, k=2)

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1 fp (x ; h=0, k=4)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

21

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1 fp (x ; h=0, k=8)

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1 fp (x ; h=0, k=16)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

22

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1 fp (x ; h=0, k=1)

Figure 8: Contour plots of penalty functions for problem (33), with different penalty
parameters k and h=0..

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

0

10

20

30

-1

-0.5

0

0.5

1

 fp (x ; h=0, k=4)

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

23

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

0

10

20

30

-1

-0.5

0

0.5

1

 fp (x ; h=0, k=4)

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

0

20

40

-1

-0.5

0

0.5

1

 fp (x ; h=0, k=4)

Figure 9: Penalty functions of form (27) for problem (33), with different penalty parameters
k and h=0.

3.2.3 Adaptive penalty algorithm

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

24

Addition of penalty terms can badly affect performance of the Nelder-Mead simplex
algorithm, especially when the zero level hyper-surfaces of inequality constraints form narrow
valleys around the solution (see e.g. problem (33)). This can be overcome by adapting penalty
parameters through the algorithm performance. The approach assumes some features of usual
penalty methods where the penalty parameter is gradually increased, and the generated successive
penalty functions are minimized by using the minimum of the previous penalty function as a
starting guess. In this way the problems with ill conditioning of the minimization of penalty
functions is alleviated, and successive minima of the penalty functions converge to the constraint
minimum.

The idea of adaptive penalty algorithm is a bit different in that the penalty parameters are

adaptively adjusted during the algorithm progress, rather than after complete minimizations are
performed. Detailed description of the algorithm is beyond the scope of this report.

3.3 Strict consideration of bound constraints

This section describes how violation of bound constraints can be prevented during

minimization by the simplex method. This is done by a new analysis function, which shits
parameter components that violate bound constraints on interval limits, calculates the objective and
constraint functions in new points, and adds a penalty term that depends on how much the
constraints were violated.

This procedure should be significantly changed for algorithm that uses function

approximations to increase the speed. This is because the procedure introduces discontinuities in the
derivatives at constraint bounds.

Let us say that we are solving the problem (1) with only inequality constraints and with

additional bound constraints on the parameter vector:

 , k k kk l x r∀ ≤ ≤ . (36)

In many cases, the bound constraints are defined only for particular parameters, for some of which
only minimal (lk) or only maximal (rk)

1 value is defined. For the sake of convenience in
implementation of computational procedures, we will use the formula (36) as if both bounds are
defined, and will set kl = −∞ and kr = ∞ for those cases where the bounds are not defined.

Let us say that a direct analysis is called at parameters x={x1, x2, …, xn} where some of the bound
constraints are violated. We actually run the analysis at modified parameters x% , which are obtained
by correction of actual parameters (at which the analysis is requested) in such a way that which are
defined in such a way that bound constraints are satisfied:

1 In this notation, letter l is used as “left” and r as “right”.

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

25

;

, ;

;

k k k k

k k k k

k k k

x l x r

k x l x l

r x r

≤ ≤
∀ = <
 >

% (37)

We then modify the value of the objective function in the following way:

 () () () ()
1

l r

n

k k
i

f f h h
=

= + +∑x x x x% % , (38)

where

() ()

() ()

; ;

0 ;

; ;

0 ;

l

r

p k k p k
k

p k k p k
k

h l x l
h

otherwise

h x r r
h

otherwise

 − > −∞= 


 − <∞= 


p
x

p
x

 (39)

and kp is a function for generation of penalty terms of a convenient form such as (27) or (32).
Constraint functions are not modified and are simply set to the values of constraint functions at x% :

 () (), i ii I c c∀ ∈ =x x% % . (40)

Expression (39) is addition of penalty terms as in (26) ad (27), where the following

constraint functions are assigned to bound constraints:

()

()
l

r

k k k k

k k k k

l c l x

r c x r

> −∞⇒ = −

< ∞⇒ = −

x

x
 . (41)

Penalty terms have the following contributions to the gradient of the objective function:

() ()
()

() ()
()

;

;

l

k k

r

k k

p p

k k

t l x

p p

k k

t x r

h t
h

t

h t
h

t

= −

= −

∂
∇ = −

∂

∂
∇ =

∂

p
x e

p
x e

 , (42)

where ek is the co-ordinate vector k (component k equals 1, others equal 0).

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

26

3.4 Implementation remarks on penalty terms

and bound constraints

This Section discusses some details relevant for implementation of penalty terms and bound
constraints in the IoptLib (Investigative Optimization Library). It is meant for developers and
advanced users of the library because a good knowledge of the library is necessary to understand
the section.

We consider modification of the original analysis function according to (38). In principle,

the implementation of the modified analysis is quite simple: we form a new analysis function that
takes the parameters, calculates the sum of penalty terms according to parameters and bund
constraints, modifies the parameters, runs the analysis function at the modified parameters, adds the
calculated objective function to the sum of penalty terms to form the modified objective function,
takes the calculated constraint functions and returns the results. All the operations could be
performed in place, i.e. without allocation of additional space for auxiliary variables.

The scheme is a bit more complicated if one would like to preserve information that is not

returned by the modified analysis function, e.g. the modified parameters at which the original
analysis function is performed, or the value of the objective function at the modified parameters. In
the modified Nelder-Mead algorithm, for example, this information is sometimes desired for
checking algorithm progress or for post-processing and analyzing the acquired results. In this case,
additional storage is necessary to keep the additional information.

There may be different possibilities with respect to what information should be kept, and

modification of analysis defined by (38) can be combined by other modifications such as adaptive
penalty functions. Different ways of handling the storage of additional data (together with the
appropriate data types) should be implemented in order to optimize the speed and memory usage,
but this would increase the complexity of code and its maintenance costs. In IoptLib a compromise
solution is achieved by using some standard data types and related functionality. In particular, the
type analysispoint is utilized that is intended for storage of analysis results. Because of
dynamically allocated storage for thing such optimization parameters and values of objective and
constraint functions, the amount of additional memory necessary to support comfortable standard
uses is not large. Manipulation of additional storage is relatively simple because standard
functionality designed around analysispoint the type can is used. This functionality can be
easily extended in line with the standards when necessary. Beside some additional storage, the cost
for using standard data types and procedures is also some additional data transcriptions (e.g. the
values of constraint functions are transcribed from the nested (inner) analysispoint structure to the
outer one).

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
3. Simplex Methods for Inequality Constraints

27

A scheme for performing the modified analysis function is shown in Figure 10. The
structure of data that is passed to the modified function is also shown in the figure.

 Optimizatino algorithm

Creates data storage a (type analysispoint) which
contains d.

 Call to optimization

d (original
definition data)
pmin, pmax

 Modified analysis function

Calculates modified parameters p%
Calculated modified penalty terms
Runs original analysis at modified parameters
Transcribes the constraint functions
Calculates penalty terms
Calculates modified objective function f%

p, calc. flags,
a

calc. flags,

()f p% , ()ic p%

p% , calc. flags,
d

calc. flags,
()f p% , ()ic p%

 Analysis function

Creates data storage a (type analysispoint) which
contains d.

Optimal parameters
*p , ()*f p , ()*

ic p

f% ic

 a (analysispoint)

 p (vector)
 calc. flags (int *)

 ()f p%

 ()ic p%

a% (analysispoint)

 Data structure:

 a% (analysispoint)

 p% (vector)
 calc. flags (int *)
 ()f p%

 ()ic p%

data

 additional data

d (original definition data)
pmin, pmax, pp …

Figure 10: Scheme for handling bound constraints and penalty terms in algorithms.

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
4. Simplex methods for equality constraints

28

3.4.1 Basic tools for handling bound constraints

3.4.2 Penalty generating functions

3.4.3 Conversion of bound constraints to ordinary constraints

4 SIMPLEX METHODS FOR EQUALITY CONSTRAINTS

5 ACCELERATING CONVERGENCE WITH RESPONSE

APPROXIMATION

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
6. Soft Simplex (Adaptive penalty)

29

6 SOFT SIMPLEX (ADAPTIVE PENALTY)

7 APPENDIX

Igor Grešovnik: Simplex algorithms for nonlinear constraint optimization problems
7. Appendix

30

7.1.1 Relations

Equivalence relations are those that are reflexive, symmetric and transitive.
Relations of partial ordering are those that are reflexive, antisymmetric and transitive.
Relations of ordering (complete ordering, linear ordering) are reflexive, antisymmetric,

transitive and linear.

Properties of binary relations (between elements of a set A):
Reflexive: a A a R a∀ ∈
Ireflexive: a A a R a∀ ∈ ¬

Symmetric: (),a b A a Rb b R a∀ ∈ ⇒

Antisymmetric: (),a b A a Rb b R a a b∀ ∈ ∧ ⇒ =

Transitive: (), ,a b c A a Rb b Rc a Rb∀ ∈ ∧ ⇒

Linear: (),a b A a Rb b R a∀ ∈ ∨

References

1

References:

[1] I. Grešovnik, IoptLib User’s Manual, revision 0. Ljubljana, 2007.

[2] M. H. Wright, Direct Search Methods: Once Scorned, Now Respectable, in D. F.
Griffiths and G. A. Watson (eds.), Numerical Analysis 1995 (Proceedings of the 1995
Dundee Biennial Conference in Numerical Analysis, p.p. 191 – 208, Addison Wesley
Longman, Harlow, 1996.

[3] W.H. Press, S.S. Teukolsky, V.T. Vetterling, B.P. Flannery, Numerical Recipies in C –
the Art of Scientific Computing, Cambridge University Press, Cambridge, 1992.

[4]

[5]

[6] R. Fletcher, Practical Methods of Optimization (second edition), John Wiley & Sons,
New York, 1996).

[7] M. H. Wright, Direct Search Methods: Once Scorned, Now Respectable, in D. F.
Griffiths and G. A. Watson (eds.), Numerical Analysis 1995 (Proceedings of the 1995
Dundee Biennial Conference in Numerical Analysis, p.p. 191 – 208, Addison Wesley
Longman, Harlow, 1996.

[8]

[9]

[10]

[11]

[12] I. Grešovnik. ”A General Purpose Computational Shell for Solving Inverse and
Optimisation Problems - Applications to Metal Forming Processes”, Ph.D. thesis,
available at http://www.c3m.si/inverse/doc/phd/index.html .

[13]

[14]

[15]

[16]

[17]

 Sandbox This is not a part of the report.

1

8 SANDBOX (THIS IS NOT PART OF THIS REPORT)

e1

x

y

e2

r e1

z e2
s

r-s
ci (r)=0

r

Figure 11: Basis vectors for definition of rotationally symmetric constraint functions .

 Sandbox This is not a part of the report.

2

