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1. Introduction

1 INTRODUCTION

This document describes variants of the modifietidleMead simplex method adapted for
solution of constrained non-linear optimization geons.

We will consider the nonlinear optimization probkeof the form

minimise f(x) xOR"

subject to ¢ (x)<0, i0l (1)
and ¢ (x)=0, JOE,

where . <x,<u, k=1,2,..,n

Functionf is called thebjectivefunction,c; andc; are called constraint functions apénd
Uk are called upper and lower bounds. The secondhamiline of the equation are referred to as
inequality and equality constraints, respectivalitt{ | andE being the corresponding inequality
and equality index sets). We will collectively refef, ¢,iJ1 andc ,iLE as constraint

functions.lx andug are the lower and upper bounds for the optimipatiariable.

2 NELDER-MEAD SIMPLEX METHOD FOR UNCONSTRAINED
MINIMIZATION

One minimization method that does not belong withi& context of the subsequent text is
the simplex methdd P! It has been known since the early sixties anddcbe classed as
another heuristic method since it is not based subatantial theoretical background.

The simplex method neither uses line searches si\drvased on minimization of some
simplified model of the objective function, and nbire belongs to the class of direct search
methods. Because of this the method does not cempell with other described methods with
respect to local convergence properties. On therdiand, for the same reason it has some other
strong features. The method is relatively insewsito numerical noise and does not depend on
some other properties of the objective functiog.(eonvexity) since no specific continuity or other
assumptions are incorporated in its design. It imeexuires the evaluation of function values. Its
performance in practice can be as satisfactoryngother non-derivative method, especially when
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high accuracy of the solution is not required ahd tocal convergence properties of more

sophisticated methods do not play so important. rislemany cases it does not make sense to
require highly accurate solutions of optimizatiorolgems, because the obtained results are
inevitably inaccurate with respect to real systeghdvior due to numerical modeling of the system
(e.g. discretization and round-off errors or inaete physical models). These are definitely good
arguments for considering practical use of the wakih spite of the lack of good local convergence

results with respect to some other methods.

The simplex method is based on construction of\aiving pattern ofn+1 points in IR"
(vertices of a simplex). The points are systemHyicaoved according to some strategy such that
they tend towards the function minimum. Differetrategies give rise to different variants of the
algorithm. The most commonly used is the Nelder-tMagorithm described below. The algorithm

begins by choice aifi+1 vertices of the initial simplexxﬁl) x,(f)l) so that it has non-zero volume.

This means that all vectors connecting a chosetexéo the reminding vertices must be linearly
independent, e.g.

M £0= Zn:/]i (xi(i)1 —xf))i 0.

i=1

If we have choserxgl), we can for example obtain other vertices by mgyifor some

distance, along all coordinate directions. If itpgssible to predict several points that should be
good according to experience, it might be bettesdbvertices to these points, but the condition
regarding independence must then be checked.

Once the initial simplex is constructed, the fuoitis evaluated at its vertices. Then one or
more points of the simplex are moved in each ii@naso that each subsequent simplex consists of
a better set of points:

Algorithm 2.1: The Nelder-Mead simplex method.

After the initial simplex is chosen, function vadui@ its vertices are evaluated:

0= f(x®)i=1..,n+1.

Iterationk is then as follows:

1. Ordering step: Simplex vertices are first reordered so th’lﬁ? < fz(") <..< f® where

n+l?
£ = £ (x*)).
2. Reflection step: The worst vertex is reflected over the centre poirihe besh vertices

(x® :EZXS") ), so that the reflected poinf* is
n

i=1
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Evaluate f,*) = £ (x®). If £ < £ < £, accept the reflected point and go to 6.
3. Expansion step: If f® < £ calculate the expansion

X1 =50 4 2{x) —x9)

and evaluatef® = £ (x¥). If < % acceptx®) and go to 6. Otherwise accedt’ and
goto 6.
4. Contraction step: If f® > £ perform contraction betweer*) and the better ox!

n+l
andx™_1f £0 <k set

n+l?

x®) =x®) 4 % (9 —x®)

(this is called the outside contraction) and eveluid? =  (x®). If &) < £® acceptx®
and go to 6.
If in contrary ) > &) set

n+l?

K = ) _ % (%t —x))

c

(inside contraction) and evaluafe”. If f* < & acceptx®) and go to 6.
5. Shrink step: Move all vertices except the best towards the bextex, i.e.

and evaluatef,® = f (v¥)i = 2,...n+1. Acceptvl¥) as new vertices.

6. Convergence check: Check if the convergence criterion is satisfiédol, terminate the
algorithm, otherwise start the next iteration.

Figure 1 illustrates possible steps of the algariti®\ possible situation of two iterations
when the algorithm is applied is shown in Figurd Be steps allow the shape of the simplex to be
changed in every iteration, so the simplex can tattaghe surface of. Far from the minimum the
expansion step allows the simplex to move rapidlyhe descent direction. When the minimum is
inside the simplex, contraction and shrink stefisaalertices to be moved closer to it.
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Figure 1. Possible steps of the simplex algorithm in twoelsions (from left to right):
reflection, expansion, outside and inside contoagtand shrink.

Figure 2: Example of evolution of the simplex.
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There are basically two possibilities for the cagemce criterion. Either that function
values at vertices must become close enough osithplex must becomes small enough. It is
usually best to impose both criteria, because redhthem alone can be misleading.

It must be mentioned that convergence to a locairmim has not been proved for the
Nelder-Mead algorithm. Examples have been constduftir which the method does not converge
for certain choices of the initial gu&sHowever, the situations for which this was shawe quite
special and unlikely to occur in practice. Anottiggoretical argument against the algorithm is that
it can fail because the simplex collapses into laspace, so that vectors connecting its vertices
become nearly linearly dependent. Investigatiothisf phenomenon indicates that such behavior is
related to cases when the function to be minimibad highly elongated contours (i.e. ill
conditioned Hessian). This is also a problematicasion for other algorithms.

The Nelder-Mead algorithm can be easily adapted donstrained optimization. One
possibility is to add a special penalty term todbgective function, e.g.

()= 10+ 18- 36 00+ X e ()] @

iol

where fn(i)l is the highest value dfin the vertices of the initial simplex. Since sedpsent iterates

generate simplices with lower values of the funtib vertices, the presence of this term guarantees
that whenever a trial point in some iteration viekaany constraints, its value is greater than the
currently best vertex. The last two sums give & boavards the feasible region when all vertices are
infeasible. The derivative discontinuity of therer with absolute value should not be problematic
since the method is not based on any model, buelpn@n comparison of function values. A
practical implementation is similar to the origirddjorithm.f is first evaluated at the vertices of the
initial simplex and the highest value is storedeflihe additional terms in (2) are added to these
values, and in subsequent iterdtesreplaced by .

Another variant of the simplex method is the mudédtional search algorithm. Its iteration
consists of similar steps to the Nelder-Mead atfaorj except that all vertices but the best one are
involved in all operations. There is no shrink sty the contraction step is identical to the $hrin
step of the Nelder-Mead algorithm. Possible stepsshown in Figure 3. The convergence proof
exists for this methdd, but in practice it performs much worse than thedddr-Mead algorithm.
This is due to the fact that more function evaluadi are performed at each iteration and that the
simplex can not be adapted to the local functiasperties as well as the former algorithm. The
shape of the simplex can not change, i.e. anglegeka it edges remain constant (see Figure 3).
The multidirectional search algorithm is bettertetlito parallel processing becausdunction
evaluations can always be performed simultaneously.
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Figure 3: possible steps in the multidirectional search rlign: reflection, expansion, and
contraction.

3 SIMPLEX METHODSFOR INEQUALITY CONSTRAINTS

We define thdeasible se¥ as the set of points that satisfy all constraints:
w={x ¢(x)<00i0l Oc, (x) =00 jOE } . 3)

We will denote by* the solution of the problem (1¥* is a local solution (optimum) of the
problem (1) if there exists a neighborhdaaf x* such that

x2x OxOWNnQ . (4)

We will define the constraint residual

0; i0l Oc(x)<0
r(x)=1 ¢ (x); iOl Oc (x)>0. (5)
[a ()] iDE

We will denote the sum of residuals as

S(x)= 2. r(x) (6)

And the maximal residual
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R(x) = max (x) (7)

i OE

Further, we will define the number of violated coaimts as

N2 Z{irr((xx);% ®

3.1 Adaptation by comparison relations

In the simplex method, only comparison of the otiyecfunction at different parameters is
performed. In fact, no predictions are made base@atual values or gradients of the objective
function, i.e. only the comparison relation “is gier than” is used.

The idea is then to adapt the method for const@mitlems by introduction of the “is better
than” in such a way that it takes into account t@msts. We will denote the relation as

X, <X, , 9)
which will readx; is better tharx,.
We impose the following common rules:

X, <X, = X,>X,

y 3 Y (10)
= (%, 2%,) 0= (x,2%,) = (x,2x),)

where x; > X, meansx; is worse tharx,. We also define the equivalence relation such xhatx,

means; is equally good thar, andx, = x, meansx; is worse or equally good thap, etc.

In algorithm code, these relations will be reflecta implementation of the comparison function
cmps, X2), which will be used for comparison of the simpépices:

-1 x, <X,
cmp(X,,X,) =10; X, 5X, . (11)
L x, =X,

The first condition for the ordering relation isth

7
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X <x0Ox0Q, (12)
WhereQ is the neighborhood from (4). This will be sagsfiif the following is valid:

x, OWOx, 0¥ =x,<x,

x, OWOx,0WOf (x,)< f(x,)=>%x,2x, )

The second line also implies
x, OWDOx,0W O f (x,)=f(x,)=x,2Xx,

This is the primary condition for the comparisotatien. In order to apply the comparison

relation in the minimization algorithm, we will havo require that some additional conditions are
satisfied.

In particular, it is desired that for any two poit there exist a local solution of the
problem (1) such that a descent path conneatiagdx exists:

X" local optimum
s(0) =x
s(1) =x
0t,0[0,4,t,0[0] (t,>t,=s(t,)£s(t)) ' 149
Ot 00,4 .t,0[0]
((0o>00E>0 ([u-t|<e=[s(u)-s(t.)] <o) )

Ox %, s(t) ,

We must specify the rules additional to (13) suudt relations< andé will be precisely
defined and (14) will be satisfied for regular ase

3.1.1 Different definitions of comparison functions

3.1.1.1 Comparison based on sum of residuals

S(x,) < 9x,) = x,¥x,

S(x) = S(x,) 0 f(x,) < f(x,)=x,2x, (15)

8
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-1 (S(X1)< S(Xz))D( )= $x,)0 (x)< (x 2))
cmp (X, X,) =40; %)= §x,)0 {x,)= {x,) (16)
1; otherwise

3.1.1.2 Comparison based on maximal residual

R(x,) < R(x,) = X, X,

R(%,) = Rx,) 0 f(x,) < f(x,) = x,2x, ")
The second line also implies
x, OW Ox,0WOf(x,) < f(x,)=x,2%,
-1 (R(Xl)< R(Xz))D( Rix,) = Rx,) O f(x)< f(XZ))
cmp, (X, X,) =10; Rx,)= Rx,)0 fx,)= f(x,) (18)

1; otherwise

3.1.1.3 Comparison based on number of violated constraintsand sum of residuals

N, (%) < N (x,) = %, €,
N, (x,) =N (x,)OS(x,) < gx,) = x,¥x, : (19)
N, (x,) =N (x,)OS(x,) = gx,)0 f(x;)< f{x,)=>x,¥x,
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-1 (Nr (X1)< N, (Xz))
(N (x )‘ N, (x,)) O

cmps (X X.) =1 (gx)< $x,))0( $)= &,)0 (k)< (&) (20)
0; N, (x ) N, (x;) 0 S{x,) = S( )0 1x;)= 1(x;)

1 otherwise

3.1.1.4 Comparison based on number of violated constraints and maximal residual

N, (x,) =N (x,) OR(x,) < RX,) = x,¥X, : (21)
= F{X

cmpe (X0X,) =4 (R(x,) < Fx,
0; N, (x,) =N, (x,
1; otherwise

Rx)= R)O fx)< fx)) (22)
(x)= Rx,) O f(x;)= f(x;)

This function can be possibly implemented as fe$io

i nt cnpNR(anal ysi sdata pt1, anal ysi sdata pt 2)
{
int N1, N2;
double R1, R2,f1,f2;
N1=Nr(pt1l); N2=Nr(pt2);
if (N1<N2)
return -1;
i f (N1>N2)
return 1;
R1=R(pt1l); R2=R(pt2);
if (R1I<R2)

10
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return -1;
if (R1>R2)

return 1;
f1=f(ptl1); f2=f(pt2);
if (fl<f2)

return -1;
if (f1>f2)

return 1;
return O;

}

In the above cod@t 1 andpt 2 are data structures that contain data calculattanwdirect
analyses at two parameter sei,(pt) is the function that returns the number of vidate
constraints according to the analysis data th#sisargumentR( pt) returns maximal constraint
residuum and ( pt) returns the value of the objective function tisastiored on its argumept .

3.2 Addition of penalty terms to the objective
function

3.2.1  Addingdiscontinuousjump to the objective function on
thelevel set

Because only comparison of the objective functibditierent parameters is performed by
the Nelder-Mead simplex method, the method is ikeBt insensitive on discontinuity of the
objective function. We can add jump discontinuitiesthe objective function, and this does not
affect the efficiency of the method.

Let us denoté(x) the modified objective function with added jumipabntinuities. As long
as

, (23)

the minimum off,, is the same as the minimum fofThe above relation is valid if we define the
modified objective function in the following wayiffare 4):

_[f()ix<e
fm(x)_{f(x)+h;xzc’h>o' (24)

11



Igor GreSovnik Simplex algorithms for nonlinear constraint optiation problems
3. Simplex Methods for Inequality Constraints

This function is obtained frorihby adding to it a positive constant within thddaling domain:
Q" ={x| f (x)=¢}. (25)

Edge of this domaim Q" is the level hypersurface (isosurface in 3D, iiin 2D) off.

<K
S
\\\“‘\\““‘
—_
N
DS

Figure 4: Original and modified objective function.

Modification of f according to (24) does not change performancehef Nelder-Mead
algorithm. It is obvious (according to algorithmsdgption in Section 2) that the path of the
algorithm can be changed only if the result of carmgons of function values in any pair of points
is changed. However, this is not the case Witk) for which relation (23) holds.

3.2.2 Exact penalty functions

The fact that modification (24) that introducesuap discontinuity does not change the
performance of the algorithm indicates that thehoétcould be efficiently modified for solution of
constraint problems by forming a discontinuous éexanalty functionExact penalty function is
obtained by adding a penalty term such tham@mimum of the obtained penalty function
corresponds to the constraint minimum of the oagiproblem Solution of the original problem
can then be obtained by finding a minimum of thegbs function.

12
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When only inequality constraints are present, génatty function can be formed by addition
of penalty terms for each constraint in the follogvivay:

fo(xip,) = £ (x)+ 2 hy (e (x)ip,), (26)
ial
where the penalty terms can be defined for examaple
0;¢<0

;=00 k=0. (27)
h+kg; ¢>0

hy (c.{k '})={

Non-negative penalty parameteandh must be large enough if we want tfiatepresents
an exact penalty function. In the sequel, we defmee precisely the conditions that the penalty
function is exact penalty function.

We usually require
h,(0:p,)=0. (28)

It is clear that in the infeasible region wheteO! ,c; (x) >0, the derivative oh with respect to
the violated constraint must be positive, i.e.

on,(cp,) |
oc

c>0= 0. (29)

However, this is not a sufficient condition thaetpenalty function has a local minimum in the
solution of the constrained problem. The derivatiugst be large enough in order to compensate for
eventual falling of the objective function as thenstraint function grows. What one needs to
achieve is that in the infeasible region, the dodpct of the gradient of the penalty function with
the gradient of any constraint function belongiogtviolated constraint, is positive.

The sufficient condition that the penalty functisrexact (i.e. it has a local minimum in the
solution of the original constrained optimizatiorolplem) is the following: There must exist a
neighborhood: of the solutionx” such that in each point of the neighborhood, tiaelignt of the
penalty function has positive dot product with gesadis of all constraint functions which are greater
than zero (i.e. belong to violated constraintshiait point. In this way, we can find a neighborhood
of X" such that a descent path exists from any poithigineighborhood to" . The condition can
be expressed in the following way:

OxOeg, 0101,

c,(x)>0:><DX fp(x;pp),Dq(x)>>O' (30)

13
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The above equation says that the directional gradietme penalty function must be positive in the
direction of the gradient of any violated consttakrom (26) we have

0,1, (x; pp):Df(x)+zw 16 () (31)

- e=(5 (x)

Equation (30) defines the condition that the pgnélinction has a local minimum that
corresponds to the solution of the original constraptimization problem. From the algorithmic
point of view this is not sufficient. We want toseme that minimization algorithm applied to the
penalty function will actually yield the local mmum that corresponds to a local solution of the
unconstrained problem (since the penalty functian bave several local minima or can even be
unbounded below). In our case we will apply theamstraint Nelder-Mead simplex algorithm, but
the same reasoning applies to application of odéifgorithms. It is intuitively obvious that if the
regione on which (30) holds is larger, the applied miniatian algorithm will converge to the
solution of the original problem from a larger @i Running the algorithm from a starting point
that is far from the region where (30) holds wilbra likely cause it to diverge (in the case that th
penalty function is unbounded below) or converga tocal minimum that is not a solution of the
original problem.

The best is if the condition (30) holds everywhe&ensidering equations (30) and (31), in
order to achieve that, the functitip(c;...) must grow sufficiently fast with its. In this way, the
second term in (31) can compensate for eventualtivegprojection of the gradient of the objective
function on the gradients of violated constraifitewever, makinghy(c;...) grow too fast close to
¢=0 would introduce ill-conditioning in the minimizan of the penalty function. We must therefore
look for a suitable compromise, which is not triviasome cases.

While addition of discontinuous term of the forn#{2loes not affect the performance of the
Nelder-Mead simplex method, addition of penaltyrterof the form (26) can significantly reduce
its efficiency. This is because the penalty termmstlthe space where the simplex moves, and the
simplex makes more rejected trials when hittingglgaowth of the penalty function at constraint
boundaries.

A disadvantage of the penalty function generatet,byf the form (27) is that it is difficult
to fulfill the condition (30) on a large sub-domsiaf the infeasible domain in the cases where the
objective function falls progressively or when t@nstraint functions grow regressively with the
distance from the zero level hyper-surfaces of wamg functions. This can be alleviated by
makingh, grow progressively with increasing positive argatney adding exponential or higher
order monomial terms, e.g.

0:c<0

P e 5]

o |-

T (QJ“ (H 'h=00k=0. (32)
+ | +texp—||;6>0
16 64
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Increasing denominators take care that higher desters contribute significantly only when
the constraint functions are large enough, whickesaminimization of the penalty function less ill
conditioned. However, this is not so important whiee Nelder-Mead simplex method is used for
minimization of the penalty function, because thisthod only makes comparisons of function
values and does not make use of higher order fumatformation.

3.2.2.1 Examples: discontinuous exact penalty function

In order to illustrate addition of a penalty tenwve consider the following one dimensional
problem:

minimise f(x)=4-e3
subject to ¢(X)<1-€*<0 (33)

We form penalty functions according to (26) and)(&esults are shown in Figure 5.

constrained minimum

f(x) N

i c (x)

15
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8 L 4
| — | fb(x,h 8)
6,
— f (X) /* fo (X, h, 4)
4- ]
| /7 fo (X, h, 2)
| / f, (X, h, 1)
2_ | constrained minimum / P
| (X, h, 0.5)
y > a1 o 1
7t — fo (X, h, 8)
6 L
i f(x)
i frn (X,0,K) / fo (X, h, 4)
4 L Al
3l 1/ fo (X, h, 2)
ol constrained minimum /7 fo (X, h, 1)
1[ ~— | b (x,h,0.5)
C) P 1 0 1 2

Figure5: Problem (33)a) problem objective function and constraint functibpfamily of
penalty functions of form (27) for different penatiarametersh=0.5 is constant) ang) family
of penalty functions at the same parameiteand ath=0.

The above example has two features that are someholwematic for penalty methods.
Firstly, the objective function progressively faits the infeasible regionx¢0) as the violation of
constraints (i.e. value of the constraint functigmpws. Secondly, the constraint function falls
regressively, i.e. its second derivative is norezdhis means that the functitg that defines the
penalty terms should grow progressively enoughrdento compensate for progressive falling of
the objective function and regressive growth of ¢bastraint functions. Since we have chosen a
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simple linear form ofh,, there will always exist a subset of infeasiblgioa where the value of the
penalty function will be smaller than its value time solution of the constraint problem. The
difficulties related to these problematic featucas be alleviated by using different (progressively
growing) forms ot, such as (32).

It can be seen from the figure that for snkaindh=0 the penalty function does not have a
local minimum in the solution of the constrainealgem. If h>0 then the penalty function does
have a local minimum in the solution of the corised problem even fok=0. However, for
minimization algorithms it will be difficult to laate this minimum because they can easily jump
over it. For largek, the subset of the infeasible region for whichditon (30) holds increases.
However, the sharpness of the edge that the pehalttion forms in the solution of the original
problem also increases, and this feature usualgctsf the efficiency of the applied minimization
algorithm. For the Nelder-Mead algorithm this featis not problematic in one dimension, but can
be in more dimensions where zero contours of caimssr form a sharp cone with its tip located in
the problem solution.

The next example does not contain the problemastufes of the previous one:

_2,
minimise f(x)=e3 .
10
subject to ¢ (X)=x+0.2% (34)

The problem and formation of penalty functiondlisstrated in Figure 6.

al

f(x)

27 /’ constrained minimum

-1 , C1 (X)

17
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12

10} =1 fo(x,h, 4)
8! ]

/_ fo (X, h, 2)
o f (X) ’

o (X,0,K) | fo (X, h, 1)
4 L A

,| | constrained minimum —\\ | o (X, h, 0.5)

b) > 1 0 : >

Figure 6: Problem (34)a) problem objective function and constraint functardb) family
of penalty functions of form (27) for different pEty parametersh€0 is constant).

Next we consider the following two dimensional exden(Figure 7):

minimise f(xy)=(x+1)"+2( x+ 1+ y)°
subject to c(xy)=-0.2%X-0.2x+ y (35)
and c(xy)=-02xX-02xy

Figure 8 and Figure 9 show penalty functions offtren (27) for this problem for different
values of parametéx

18



Igor GreSovnik Simplex algorithms for nonlinear constraint optiation problems
3. Simplex Methods for Inequality Constraints

0.5

-0.5

\

-

fo (x; h=0,k=1)

f (x) | ¢ (X)=0
§
constraned\

minimum —— | ¢ (X)=0

19




Igor GreSovnik Simplex algorithms for nonlinear constraint optiation problems
3. Simplex Methods for Inequality Constraints

T

fo (x; h=0,k=2)

20



Igor GreSovnik Simplex algorithms for nonlinear constraint optiation problems
3. Simplex Methods for Inequality Constraints

fo (x; h=0,k=8) A

-1 -0.5 0 0.5 1 1.5

'
=

21



Igor GreSovnik Simplex algorithms for nonlinear constraint optiation problems
3. Simplex Methods for Inequality Constraints

= ‘ ‘ L/ ‘
f, (x; h=0,k=1)

0.5

-0.5

4

Figure 8: Contour plots of penalty functions for problem 38ith different penalty
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Addition of penalty terms can badly affect perforro@a of the Nelder-Mead simplex
algorithm, especially when the zero level hypefawes of inequality constraints form narrow
valleys around the solution (see e.g. problem (3Bhjjs can be overcome by adapting penalty
parameters through the algorithm performance. Tp@roach assumes some features of usual
penalty methods where the penalty parameter isugthdincreased, and the generated successive
penalty functions are minimized by using the minimwf the previous penalty function as a
starting guess. In this way the problems with dinditioning of the minimization of penalty
functions is alleviated, and successive minimahef penalty functions converge to the constraint
minimum.

The idea of adaptive penalty algorithm is a bifedént in that the penalty parameters are
adaptively adjusted during the algorithm progreasher than after complete minimizations are
performed. Detailed description of the algorithnbéyond the scope of this report.

3.3 Strict consideration of bound constraints

This section describes how violation of bound o@ists can be prevented during
minimization by the simplex method. This is done &#ynew analysis function, which shits
parameter components that violate bound constramiaterval limits, calculates the objective and
constraint functions in new points, and adds a Iperterm that depends on how much the
constraints were violated.

This procedure should be significantly changed fdgorithm that uses function
approximations to increase the speed. This is Isectne procedure introduces discontinuities in the
derivatives at constraint bounds.

Let us say that we are solving the problem (1) wvaitthy inequality constraints and with
additionalbound constrainten the parameter vector:

Ok, I <X <, . (36)

In many cases, the bound constraints are defingdfonparticular parameters, for some of which

only minimal () or only maximal )’ value is defined. For the sake of convenience in
implementation of computational procedures, we wile the formula (36) as if both bounds are
defined, and will set, = - andr, = for those cases where the bounds are not defined.

Let us say that a direct analysis is called atrpatarsx={xi, X, ..., X,} where some of the bound
constraints are violated. We actually run the agialgt modified parametefs, which are obtained

by correction of actual parameters (at which thedyais is requested) in such a way that which are
defined in such a way that bound constraints arsfieaml:

! In this notation, letteris used as “left” and as “right”.
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X L SX ST,
Ok, % =9 b ;% <l (37)
r.k;Xk>rk

We then modify the value of the objective functinrthe following way:

n

f()=f(R)+2h (x)+h (x) (38)

i=1

where

h, (X):{ hy (I =%i P ) 51> =0

0 ; otherwise
(39)

h, (x):{ (X =11 ) o<oo

0 : otherwise

andk, is a function for generation of penalty terms ofanvenient form such as (27) or (32).
Constraint functions are not modified and are synsgit to the values of constraint functionxat

0idl,¢ (x)=c (X) . (40)

Expression (39) is addition of penalty terms as(26) ad (27), where the following
constraint functions are assigned to bound comsrai

l, >-w=c, (x)=1,-X, )
f<=¢ (X)=x-T1

Penalty terms have the following contributionste gradient of the objective function:

dh (t;p )
Dhq (X):_—pat > (I )ek
t=(l, =X
k k ’ (42)
oh (t;p
Oh, (x)=—pgt 2 &
t=(% 1)

whereeg is the co-ordinate vectér(componenk equals 1, others equal 0).
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3.4 1 mplementation remarks on penalty terms
and bound constraints

This Section discusses some details relevant fptementation of penalty terms and bound
constraints in thdoptLib (Investigative Optimization Library). It is meafir developers and
advanced users of the library because a good kdgelef the library is necessary to understand
the section.

We consider modification of the original analysisétion according to (38). In principle,
the implementation of the modified analysis is gustmple: we form a new analysis function that
takes the parameters, calculates the sum of pebaligs according to parameters and bund
constraints, modifies the parameters, runs theyaisalunction at the modified parameters, adds the
calculated objective function to the sum of pen#édtyns to form the modified objective function,
takes the calculated constraint functions and metuhe results. All the operations could be
performed in place, i.e. without allocation of aduhal space for auxiliary variables.

The scheme is a bit more complicated if one woiklel o preserve information that is not
returned by the modified analysis function, e.g thodified parameters at which the original
analysis function is performed, or the value of ¢thgective function at the modified parameters. In
the modified Nelder-Mead algorithm, for exampleistinformation is sometimes desired for
checking algorithm progress or for post-processind analyzing the acquired results. In this case,
additional storage is necessary to keep the additiaformation.

There may be different possibilities with respextwthat information should be kept, and
modification of analysis defined by (38) can be bamed by other modifications such as adaptive
penalty functions. Different ways of handling thterage of additional data (together with the
appropriate data types) should be implemented deraio optimize the speed and memory usage,
but this would increase the complexity of code @sdnaintenance costs. lloptLib a compromise
solution is achieved by using some standard dgestyand related functionality. In particular, the
type anal ysi spoi nt is utilized that is intended for storage of analysesults. Because of
dynamically allocated storage for thing such optation parameters and values of objective and
constraint functions, the amount of additional mgmmecessary to support comfortable standard
uses is not large. Manipulation of additional sgerais relatively simple because standard
functionality designed arounanal ysi spoi nt the type can is used. This functionality can be
easily extended in line with the standards wheressary. Beside some additional storage, the cost
for using standard data types and procedures dssalse additional data transcriptions (e.g. the
values of constraint functions are transcribed ftbm nested (inne@gnalysispointstructure to the
outer one).
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A scheme for performing the modified analysis fiumetis shown in Figure 10. The

structure of data that is passed to the modifiedtion is also shown in the figure.

Call to optimization

Data structure:

'd (original i pon :
{ definition data) | Eo*pnmal*paramezterﬁ: a (analysispoinx
ponpo 1 (| 47 10)50P) | e
----------------- fg p (vecto)
Optimizatino algorithm c:sl(lc.)flagsmt*)
f(p
Creates data storaggtypeanalysispoint which & (p)
containsd. _ o
a (analysispoint
_______________________________ i a (analysispoint
ip, calc. flags, ; calc. flags, ! b wecto)
1a i i = i i P (vecto
"""""""" :__f_(_F_)_)_’_(i_(_Fi)___ E i calc. flagsift *)
i 1(p)
Modified analysis function c(p)

Calculates modified parameteps

Calculated modified penalty terms

Runs original analysis at modified parameters
Transcribes the constraint functions

additional data

Calculates penalty terms

Calculates modified objective functioh

i p, calc. flags
id

-
1
1

N
1

i calc. flags, i
i 1(p).c(p)

Analysis function

containsd.

Creates data storaggtypeanalysispoint which

T o

(original definition data) !
min, Pmax Pp --- i

Figure 10: Scheme for handling bound constraints and petaltys in algorithms.
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3.4.1 Basctoolsfor handling bound constraints

34.2 Penalty generating functions@

3.4.3 Conversion of bound constraintsto ordinary constraints

4 SIMPLEX METHODSFOR EQUALITY CONSTRAI NTS@

5 ACCELERATING CONVERGENCE WITH RESPONSE
APPROXIMATION @
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6 SOFT SIMPLEX (ADAPTIVE PENALTY) ©

7 APPENDIX
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711 Relations

Equivalencerelations are those that areflexive symmetricandtransitive
Relations of partial ordering are those that areflexive antisymmetriandtransitive
Relations of ordering (complete ordering, linear ordering) areflexive antisymmetric

transitiveandlinear.

Properties of binary relations (between elements s#tA):
Reflexive:JalJAaRa
Ireflexive: Dall A= aRe

Symmetric:0a, b0 A(aRb=> bR#
Antisymmetric:0a, b0 A(aRbd bRa> & )
Transitive: Ja,b,c0 A(aRH] bRe> aR)l
Linear: Da,b0 A ( aRbJ bR
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