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1 INTRODUCTION

This document introduces the basics of matrix computations and especially matrix
decompositions, which are also used in the Investigative Optimization Library (IOptLib).

The document was created by putting together a number of notes in MS Word created by the
myself for memorizing a number of results from linear algebra that are relevant for optimization
and other fields of numerical analysis.

| have created a large portion of these notes during my undergraduate study when | have
practicing numerical software development for training, hobby and to earn some additional money
that allowed me to cover more than just the basic needs, e.g. a bicycle or a one week trip to Paris.
Another package of the notes was created when finishing the graduate degree on physics, when |
have also put some hand written notes form the “Mathematics 1 subject into electronic form.

The collection was further supplemented during my Ph.D. study at the University of
Swansea in the U.K. Then, one day when looking at all those scattered documents that contained
short notes on individual topics, | realized that it would be much easier for myself to have all the
material in a single document. At that time, the MS Word has also advanced enough to allow
creation of longer documents with lots of formulas and images®. So I have reserved a weekend and
put all the documents in a single files, arranged titles and references and formatted the document in
such a way that it acquired a relatively readable form.

After that, | was still adding notes from time to time when | needed something to memorize,
and this was much easier to do in a settled document than in a group of scattered files. However,
many portions of the script are not in the form | could recommend for studying. It must be
understood that some of these notes emerged from yellowed old notes which represented just a very
condensed hints on individual topics, and there are many portions that I didn’t touch (except for
formatting) since they were put in electronic forms. But when I need to look back at something and
I notice that this is very awkwardly written, | usually take some time to correct that. In this way |
hope that the script will one day become a useful and easily digestible source of reference
information for people like myself, who are not truly experts in linear algebra but use it in everyday
life.

Author of this script, 9ger Gredounit

! For a long time, at least over the decade, this was the major obstacle for writing scientific and engineering documents
in MS Word, and this is probably the main reason that Tech remained the desktop publishing program of choice in
many scientific and not so rare engineering environments. Because for people who did not have problems with learning
programming languages and other computer related skills, it was far easier to work with a program where you couldn’t
see the result of your work instantly than with a program that crashed for nothing every couple of minutes.
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2 BASICS OF MATRIX THEORY

2.1 Basic terms

2.1.1.1 Inner product

The standard inner product in [ " is defined by

<X’Y> = in Yi - (1)

2.1.1.2 Matrix basic terms

A matrix is a rectangular table of numbers or other quantities that can be added or
multiplied. Most common is use of matrices that are defined over the real (real matrices) or
complex (complex matrices) field. We will usually denote matrices by large bold letters, where
dimensions (the number of rows and columns) will sometimes be specified in subscript, e.g. A,

denotes a matrix with m rows and n columns. A matrix where one of the dimensions equals 1 is
often called a vector, and is interpreted as an element of a coordinate space. A 1xn matrix is called
a row vector and a nx1 matrix is called a column vector. Matrix components will usually be
denoted by the corresponding letter, but not written in bold, with indices in the subscript, e.g. A

will mean the element in row i and column j of the matrix A. Sometimes components will be
denoted by small letters, i.e. a;. A square matrix is those that has the same number of rows and

columns.

Matrix is normal if it commutes with its conjugate transpose:

A"A=AA". )

Adjoint matrix of a n-by-m matrix A is its conjugate transpose:

(A7), =As 3)
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where subscripts denote the i,j-th component of the matrix, with 1<i<n and 1< j<m. This is
expressed as

A =AT . (4)

The conjugate transpose of a matrix or its adjoint matrix is also denoted by A" (H coming from
Hermitian conjugate)

2.1.1.3 Hermitian and unitary matrices

Hermitian or self-adjoint matrix is a square matrix that is equal to its conjugate transpose,

A=A" (5)

Hermitian matrices are normal, and the finite dimensional spectral theorem applies, which
means that every Hermitian matrix can be diagonalized by a unitary matrix. Eigenvalues of every
Hermitian matrix are real and eigenvectors with distinct eigenvalues are orthogonal.

The sum of two Hermitian matrices is Hermitian, and inverse of an invertible Hermitian
matrix is also Hermitian. The product of two Hermitian matrices is Hermitian only if they commute.

Anti-Hermitian or skew Hermitian matrix is a matrix for which A" =—A. Entries in the

main diagonal are pure imaginary. The same is true for eigenvalues.

Unitary matrix is a square matrix that satisfies the condition
U'u=uUu’=lI, (6)

where | is the identity matrix. A matrix is unitary if it has an inverse which is equal to its
conjugate transpose. Unitary matrix preserves the standard inner product on [ ",

(Ux,Uy)=(xy) (M
If A is a square matrix then the following conditions are equivalent:

1. Aisunitary

2. A isunitary

3. The columns of A form an orthonormal basis of [J" with respect to the standard
inner product on 0 ".
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4. Ais an isometry (i.e. distance preserving isomorphism®) with respect to the norm for
this inner product.

A unitary matrices are calles special if its determinant is 1.

Unitary matrices are normal , therefore the spectral theorem applies to them. Every unitary
matrix U has decomposition of the form

U=VIV, (8)
where V is unitary and X is diagonal and unitary.

Real unitary matrices are orthogonal matrices and real hermitian matrices are symmetric
matrices.

2.2 Polar Decomposition

Polar decomposition is a matrix decomposition of the form
A=UP , 9)
where U is an unitary matrix and P_is a positive-semidefinite Hermitean matrix. The decomposition

always exists, and if A is invertible then the decomposition is unique and P positive definite. The
matrix P is given by

P=JA A, (10)

where A’ is a conjugate transpose of A. A positive definite Hermitean matrix has a unique positive
square root. The matrix U is then given as

U=AP™". (11)
In terms of the singular value decomposition, we have

P=VXIV
. (12)
U=wWV

! Isomorphism is a bijective map f such that both f and f* are homomorphisms (i.e structure preserving maps -

#(uev)=4(u)og(v))
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which confirms that P is positive-semidefinite and U unitary.

Determinant of A can be expressed, according to (9), as
det A=detPdetU=re", (13)

which gives the corresponding polar decomposition of the determinant of A, since
detP =r =|det A| and detU=e'"’.

A matrix can also be decomposed as

A=P'U, (14)
where U is the same as before and
P'=U PU’l:«fAA*:WZW* (15)

The matrix A is normal if and only if P'=P. Then UX =XU and it is possible to diagonalize U
with a unitary similarity matrix S that commutes with X, giving SUS =®™, where ® is a

diagonal unitary matrix of phase e'?. Putting, Q =V'S", the polar decomposition can be re-written
as

A=(QeQ’)(QxQ), (16)
so A also has a spectral decomposition
A=QAQ (17)

with complex eigenvalues so that A A" =X? and a unitary matrix of complex eigenvectors Q.

2.3 Eigenvalues and eigenvectors

Let Acl0™. A€l iscalled an eigenvalue of A if there exists a non-zero (non-null) vector
xell" such that Ax=AX. X is an eigenvector associated with A. The set of eigenvalues of A is

called the spectrum of A denoted by o(A). x and y are the left and right eigenvectors of A
associated with A, respectively, if
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Ax=x, y"A=ay" . (18)

The eigenvalue corresponding to the eigenvector x can be determined by computing the
Raileigh quotient 4 =x"Ax/(x"x). Eigenvalue X is solution of a characteristic equation

p.(2)=det(A-21)=0, (19)

where p, (/1) is the characteristic polynomial. Because this is a polynomial of degree n, there exist
n eigenvalues of A that are not necessarily distinct. The following is true:

det(A)=] 4 . tr(A)=)4,

(20)
O'(A) = ()'(AT ) , O'(AH ) = O'(A)

From the first relation we see that a matrix is singular if it has at least one zero eigenvalue, since
n
Pa (O) =detA= Hi:lﬂf' '

If A has real entries, then coefficients of pA(A) are real and therefore complex eigenvalues
occur in complex conjugate pairs.

The maximum module (absolute value) of the eigenvalues of A is called the spectral radius
of A and denoted by

p(A) = max |/1| (21)

leo‘(A)

A is an eigenvalue of Aiff 1 is an eigenvalue of A". Therefore p(A)=p(A"). Also
p(aA)=|a|p(A) and p(A*)=(p(A))" Vkel

Let A be a block triangular matrix

All AlZ Alk
0 AZZ A2k (22)
0 0 - A,

Because p,(A)= Pa(A)+ Paz (A)+ ...+ Paec (4), the spectrum of A is union of the spectra

of each diagonal block. As a consequence, if A is triangular then its eigenvalues are its diagonal
elements.
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For each eigenvalue of matrix A the set of eigenvectors associated with A, together with the
null vector, identifies a subsubspace in 0" which is called the eignespace associated with A and
corresponds by definition to ker(A—A1). The dimension of the eigenspace is

dim(ker(A—A1))=n—rank(A-11), (23)
and is called geometric multiplicity of the eigenvalue A. It can not be greater than the algebraic
multiplicity of A, which is the multiplicity of A as a root of the characteristic polynomial.
Eignevalues that have geometric multiplicity strictly less than algebraic multiplicity are called

defective.

The eigenspace associated with an eigenvalue of the matrix A is invariant with respect to
Ain the sense of the following definition:

A subspace S ell" is called invariant with respect to a square matrix A if AS < S, where
AS is S transformed through A.

2.4 Spectral theorem

2.5 Similarity transformations, Schur Decomposition & Spectral
Decomposition

Similarity transformation is transformation of the form

A—>C'AC (24)

where C is a square nonsingular matrix having the same order as A. We say that matrixes A
and CAC are similar matrices. If C is unitary then matrices are unitary similar. Two similar
matrices have the same spectrum and the same characteristic polynomial.

We can easily check that if (ﬂ,,x) are eigenvalue-eigenvector pair for A then (l, C’lx) are

eigenvalue-eigenvector pair for C* AC since (C‘1 AC)C‘1 Xx=C*Ax=A1C"x
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Matrices AB and BA, AclJ™ and Bell™" are not similar, but satisfy the following
property:

o(AB\[0}=c(BA)\{0}, (25)

i.e. AB and BA share the same spectrum apart from null eigenvalues, so that
p(AB)=p(BA).

2.5.1 Schur Decomposition theorem

Given A ell ™, there exists an unitary matrix U such that

A by by
0 b

UTAU=U"AU=| . & LT |=T (26)
0 0 4

where A, are eigenvalues of A.

It follows that every square matrix A is unitary smilar to an upper triantular matrix. Matrices
T and U are not necessarily unique.
Among the others, the Schur decomposition theorem gives rise to the following results:

Every Hermitian matrix is unitary similar to a diagonal real matrix. Every Schur
decomposition of a Hermitan matrix is diagonal:

A" =A= UTAU=A=diag(4,... 1) 27)

It turns that AU=UA, i.e. Au,=Au, for i=1...,n, i.e. column vectors of U are
eigenvectors of A. Since eigenvectors are mutually orthogonal, a hermitean matrix has a set

of orthogonal vectors that generate the whole space [1". Furthermore, it can be shown that a
matrix A of order n is similar to a diagonal matrix D iff the eigenvectors of A form a basis in

on.

Spectral decomposition (or eigendecompozition) of a normal matrix:
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A matrix Ael0™ is normal iff it is unitary similar to a diagonal matrix. As a consequence,
a normal matrix admits the following spectral decomposition:

A=UAU"=>" A uul, (28)

with U being unitary and A diagonal.

Let A and B be two normal and commutative matrices. Then the generic eigenvalue g, of
A+B isgiven by the sum z =4 +¢&, where 4, and g are eigenvalues of A and B associated with
the same eigenvector.

There are nonsymmetric matrices that are unitary similar to diagonal matrices, but they are
not unitary similar.

2.5.1.1 Canonical Jordan form
Schur decomposition cnan be improved as follows.

Let A be any square matrix. Then, there exists a nonsingular matrix X which transforms A
into a block diagonal matrix J such that

Xt AX=J=diag(J, (4),Jy, (%), Iy (4)), (29)

which is called a Jordan canonical form. 4, are eigenvalues of A and J, (1)<l “* is a Jordan
block of the form J,(1) =4 for k=1 and

A1 0
0 1

3. ()=t . .1 0], (30)
: A1
0 0 4

If an eigenvalue is defective, the size of the corresponding Jordan block is greater than one.
Therefore, a matrix can be diagonalized by a similarity transform iff it is nondefective.
Nondeffective matrices are therefore called diagonalizable. Normal matrices are diagonalizable.
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2.6 Singular Value Decomposition

The Singular value decomposition (SVD) can be seen as generalization of the spectral
theorem to arbitrary matrices (not necessarily square). For a m-by-n matrix over the field K of real
or complex numbers A there exists a factorization of the form

> vT

A (mxn) " (nxn)

(mxn) = U(mxm)

, (31)
UTU=1;V'V=I;%,=0;; Z,=0;i#]

where U is a m-by-m unitary matrix over K, X is m-by-n trapezoid matrix with nonnegative
numbers on the diagonal and zeros off the diagonal and V is a n-by-n unitary matrix over K. Such
decomposition is called a singular-value decomposition of M. A common convention is to order the
values o; =X, in non-increasing fashion. In this case, the diagonal matrix is uniquely determined

by M (but the matrices U and V are not).

The matrix V contains a set of orthonormal “input” vectors for “analysis” basis vector
directions for A, the matrix U contains a set of orthonormal “output” basis vector directions for A,
the matrix X contains the singular values, which can be understood as scalar “gain controls” by
which each corresponding input is multiplied to give a corresponding output.

A non-negative number o is a singular value of A only if there exists unit-length vectors u
in K" and vin K" such that

Av=cu and Au=oV . (32)

The vectors u and v are called left-singular and right-singular vectors for o, respectively. In any
singular value decomposition, the diagonal entries of X are equal to the singular values of A. The
columns of U and V are left and right singular vectors for the corresponding singular values. The
theorem states that

e An mxn matrix A has at most p=min(m,n) distinct singular values.

e It is always possible to find a unitary basis for K™ consisting of left-singular vectors of
A.

10
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e It is always possible to find a unitary basis for k" consisting of right-singular vectors fo
A.

A singular value for which we can find two left (or right) singular vectors that are not
linearly dependent is called degenerate. Non-degenerate singular values always have unique left
and right singular vectors, up to multiplication by a unit phase factor e (for the real case, up to
sign). Consequently, if all singular values of M are non-degenerate and non-zero, then its singular
value decomposition is unique, up to multiplication of a column of U by a unit phase factor and
simultaneous multiplication of the corresponding column of V by the same unit phase factor.

Degenerate singular values have non-unique singular vectors (by definition). If u; and u, are
two left-singular vectors which both correspond to the singular value o, then any normalized linear
combination of the two vectors is also a left singular vector corresponding to o (and similar for the
right singular vectors). Singular decomposition is then not unique.

When A is a Hermitian matrix which is positive semi-definite (all eigenvalues are
real and non-negative), then the singular values and singular vectors of A coincide with the
eigenvalues and eiganvectors of M,

A=VAV". (33)

More generally, given a SVD of M, the following two relations hold:
A'A=VIU ULV =V(Z'Z)V’
(34)

*

AA =UIV'VZ'U =U(2>:*)U

The right hand sides of these relations describe the eigenvalue decompositions of the left
hand sides. Consequently, the squares of the non-zero singular values of A are equal to the

non-zero eigenvalues of A A. The columns of U (left singular vectors) are eigenvectors for
A A" and the columns of V (right singular vectors) are eigenvectors of A" A,

2.7 Examples in physics

11
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2.7.1 Finite deformation tensor

Finite deformation tensors are used when the deformation of a body is sufficiently large that
the assumptions in small strain theory are not valid.

We denote X the position vector of a particle in the initial (undeformed) state of a body
relative to some coordinate basis. The position of the particle in the deformed state is denoted x. If
dX is a line segment that joins two nearby particles in the undeformed state and dx is the line
segment joining the same two particles in the deformed state, then the linear transformation
between the two segments is given by

dx=FdX . (35)
The quantity F is called the deformation gradient. and is given by:

_ OX

F=V,Xx=—, 36
X=os (36)
or:
OX

== 37
=X (37)

F is a second order tensor and contains information about the stretch and rotation of the body.

Polar decoposition:

F=RU=VR, (38)

where R is a proper orthogonal tensor representing rotation, and U and V are positive definite
symmetric tensors that represent stretches. U is called the right stretch and V _is called the left
stretch tensor.

Spectral decompositions of U and V are

3
U=> 4N, ®N, (39)
i=1
and
3
V=>in®n,, (40)
i=1

12
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where A, _are the principal stretches, and N, and n, are the directions of the principal stretches

(princi;ﬁ directions). The principal directions are related by

n =RN, . (41)

Rotation independent deformation measures are introduced because rotation should not
induce any stress in a deformable body. Rotation is excluded by multiplying R by its transpose. In
this way we obtain the Right Cauchy-Green Tensor

C=F'F=U"U
9% 0% (42)
”_;axaxj

and the left Cauchy-Green tensor

B=FF =VV' =V?

3 - OX, . 43
B -3 a% OX (43)
= 0X, 0X,
The spectral decompositions are
3
C=> A/N;®N,
. (44)
B=> 1Zn,®n,

i=1

3 LU DECOMPOSITION

L — lover triangular

13
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U — upper triangular with 1 on diagonal

Ly 1>

Li=1L i=] (3.0.
0, 1<]
U, 1]

o, - @0
0, 1>]

k=1
i-1
Zl_,kukJ + |_ Uy + Z L,kuk, +L, UJJ + Z LUy
:l k=i+1 25 -0 —O k= J+1b"_J"0_"
k<< i<k<]j i<j<k
i=j: LU, +LU LU
J z Iy “_'J+kzu+:1“’|§‘-v?
k<i=j ﬁ;k—’
j-1
i>jr YL UkJ+LU + Z LUy + LU + Z LUy
k=1 o k=i g oy k= |+1”0‘*_'0‘
k<jdi j<k<i j<i<k
<] LUy
=
[LU]=1i=j: > LU, (3.45)
o
1> ] LikUkj
k=1

14
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4 LDL" DECOMPOSITION

4.1 Introduction: General on Matrix Products

k=1
i<j: ZL,kukJ + LU, + Z L,kukj + LU+ Z L,kukJ
k=i+1 27 -0 k= J+1 -0 O
k<i<] i<k<]j i<j<k
-1
i:j: ZLUkJ+L|| ||+ZL|kUkJ
k: k=i+1 7 0
k<| j i<k
i>j: ZL,kUkJ + LU+ ZL,kukJ +L, u,J + z LUy
k=j+1 _0 k= |+l‘-";i’0_‘
k<j<i j<k<i Taa
min(i,j)
[LU]= > LY, (4.0.
k=1

15
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q; = [LDLT]ijz kzril"lik [DLT]ij kzril"lik [LT kjdkk = ;Iikljkdkk =

1< ]2 zlikljkdkk <] lekljkd +h|j|dll
min(i, j) i |—1 -
= Iikljkdkk =3i=]: Zliklikdkk + Iiizdii =3i=]: Zlikzdkk + Iiizdii
k=L k=L ] kel ]
j -1
i>j: DLl dy i>j: I,kljkd +IUI”dJJ
k=1 k=1 y

i—1
i<ta; =2 Ly +h1d,  a, _ZIJKI dy +1.1.d
k=1

ji i ii
—1 —l

=a;=a; >A=A'

- LDLT decomposition is possible only for symmetric matrices.

Let A be any square matrix and D any diagonal matrix. Then
[AD]”: Aj Djj ) (4.0.

[DA] i= ADi (4.0.

and

[Dz]ij = [DDT i = [DTD i =dy

pat] =2 ala) = Yaa,

[ATA]U [AT] a4 = Zak.akj

(AT =(AT] AT =AAT

from which follows that AA™ is symmetric.

16
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4.1.1  Eigenvalues and Eigenvectors

Let’s have a square matrix A and let’s there exist some non-zero vector v so that
Av = Av, (4.0.
where A is ascalar. Then v is an eigenvector and A an eigenvalue of matrix a. We also see
that if v is an eigenvector of a, then also kv is eigenvector of A, where k is any scalar different than
zero. An invertable square matrix has n eigenvectors where n is matrix dimension (i.e. number of
rows or columns):

Av, =Av,, 1=1..,n. (4.0.

Positive definitenes:
Matrix A is positive-definite, if

u'Au>0vu=0. (4.0.
Matrix is positive-semidefinite, if

u"Au>0Vvu=0, (4.0.
negative-definite, if

u"Au<0Vvu=0, (4.0.

negative-semidefinite if the relationship includes allows the equality sign, and indefinite
otherwise.

Matrix is positive-definite, if and only if all its eigenvalues are greater than zero (which can
be seen if the matrix components are written in its eigensystem, i.e. a cooordinate system the basis
of which form matrix eigenvectors.

If a square matrix A is invertable (i.e. has a full rank), then matrices AAT, ATA and A?
are all positive definite.

Let’s denote such matrix B. The relation (4.0 can be verified if we write vector u as a linear
combination of eigenvectors of A.

17



4. LDLT Decomposition

4.1.2 General (asymmetric) matrices

4.1.3 Symmetric Real Matrices

For symmetric matrices,

Matrix Decompositions With Implementation Remarks

A=A (4.0.

We can perform the LDLT decomposition of such a matrix to a product of a lower triangular
matrix L, diagonal matrix D and transpose of L:

A=LDL’ (4.0.

where L is a general lower triangular matrix with unit diagonal elements,

and D is diagonal:

Ly 12
Ly=<2 . "¢ (4.0.
0, iI<]

d i=i
D; :{ v I J} (4.0.
0, 1#]

18
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. min(i, j) ; min(i, j) ; min(i, j)
;= [LDL ]ij: Iik [DL ]kj: Iik[L ]kjdkk = Iikljkdkk =
k=1 k=1 ket
i1
<] Iikljkdkk + Iiiljidii
k=1
o EU ,
=q1=]. Zlik dy +1;°d;;
k=1
1
i>j: iy + 15150 5
k=1
i i
P<jray= Llydy a;= Iljklikdkk
k=1 k=1
—Sa =a, =>A=A"

- LDLT decomposition is possible only for symmetric matrices.

a; = dll

a, = |21d11 + |21d11

a = |21d11 + |21d11

4.2 LDLT Decomposition

A=AT (4.0.
We can decompose symmetric matrices in the form

A=LDL’ (4.0.

where L is a lower triangular matrix with unit diagonal elements,

19



4. LDLT Decomposition

Ly 1>
0, i<j
and D is diagonal:
D. = Dy 1=
L o N
min(i, j min(i, j)
[LDLT] = Ilk[DLT]kJ: ||k[|—T (A =
kL k=L
j
IBIENED "N
= k=1
i<j!a;
. =1 Vi
i<j: qQ; = Zlikljkdkk aj; = Iljklikdkk
k=1 k=1

=a;=a; >A=A'

a; = |11|11d11
—
-1
a = I 1I11d11

=1

a,, = |21|21d11+ Izzlzzdzz
—
=1
a; = |31I11d11
(G}
=1
a;, = |31|21d11+ I32|22d22
S
=1
A3 = |31|31d11 + |32I32d22 + |33|33d33
—

=1
ayy =y, 0y
(]
=1
8y, = llyyy; +14p05,0
e
21
85 = Lyglaidyy + Lolsody, + 145550
———
=1
8y = lygladyy + Liolspdp + gl ssas + Lialsg oy
—

=1

Matrix Decompositions With Implementation Remarks

(4.0.

(4.0.

min(i, j)

zllkljkdkk
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4.2.1  LDLT Decomposition Using Lower Triangle

A general formula is then

i=1,...,n:

1 = , :
Iij :d_(aij_zlikljkdkkj’ J=1..,1-1 (4.0,
i k=1

i1
dii =q; — Iikzdkk

k=1

Instead by lines we can also evaluate factors by columns:

i=1,..,n:

i1
dii =g _zlikzdkk (4.0.
k=1

i-1
|ji:di(aij—zlik|jkdkkj, j=i+Li+2,..,n
i k=1

(note that a; =a; since A is symmetric).
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SYM.

X
X
X
X

Figure 4.1: Evaluation of elements of D and L (i.e. the lower triangle) of the LDLT
decomposition from lower triangle of the original matrix according to equation (4.0.

SYM.

X XX, X
X

Figure 4.2: Evaluation of elements of D and L (i.e. the lower triangle) of the LDLT
decomposition from lower triangle of the original matrix according to equation (4.0.
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4.2.2  LDLT Decomposition Using Only Upper Triangle:

Equations can be obtained from (4.0 and (4.0 taking into account relations a; =a; and

u; =1, where U= L" is transpose of the lower triangular factor (i..e the upper triangular factor) of

the decomposition. Formulas are then (derived from (4.0:

i=1,..,n:

1 = : :
U =d_(aji_zukiukjdkkJ! J=1..,1-1 (4.0.
i k=1

]

i-1
dii =a; _Zukizdkk
1

k=
or (derived from (4.0):
i=1,..,n:
i—1
dii =g _zukizdkk (4'0'
k=1

1

i-1
u; = ; (aij —Zukiukjdkk) j=i+1i+2,..,n
k=1

Evaluation order for terms in both equations is shown graphically in Figure 4.4 and Figure 6.1.
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X X X" X-X-X X X X X X

IBKXXXXXXXXXXX

Figure 4.3: Evaluation of elements of D and L (i.e. the upper triangle) of the LDLT
decomposition from upper triangle of the original matrix according to equation (4.0).

X uX X X

SYM.

X X X XX XX

KL XX TX IX 'X 'X IXIX X 'X 'X

Figure 4.4: Evaluation of elements of D and L' (i.e. the upper triangle) of the LDLT
decomposition from upper triangle of the original matrix according to equation (4.0).

24
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5 CHOLESKY DECOMPOSITION

This decomposition is of form
A=LL", (5.0.

where L is a lower triangular matrix

L >
L:{”’ ! J} (5.0.
0, 1<

Note that diagonal elements of L are in general different than 1, unlike in the LDL" decomposition.
A must be a symmetric positive definite matrix.

i i min(i,j)

Iik [LT]kj: Zlikljk = Zlikljk =

k=1 k=1 k=1

q; = [LLT i kznllik [LT]kj:
-1

min(i,j)

= Z'ikhk =

k=

N
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5. Cholesky Decomposition

a11 I11

i
= Iéllll
Ay = |21|21 + I22I22
a3 = |3=1|11
Az, =gyl + 15l

217 132122
83 = lygly + lgplap + Lol

ay,

I
—
H—

11

yp = lyglyy + I4_2'22
s = lyalsy + ks, + |4_3|33

Q= |41|41 + |42|42 + |43I43 + |44|44

Computing the LL" factors:

| 1
21 I_a21
11
|22 - azz - I21|21
| 1
31 I_aSl
11
1
I32 = I_(asz - |31|21)
22
I33 = \/(ass - |31|31 - |32|32)
| 1
41 I_a41
11
1
|42 | (a42 - |41|21)
22

1
|43 = I_(a43 - I41|31 - |42I32)
33

|44 = \/a44 - I41|41 - |42I42 - I43'43

General formula;

Matrix Decompositions With Implementation Remarks
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1 = . .
Iijzl_ aij_zlikljk v =111 (5.0.

In this case we evaluate elements of L by rows, i.e. in the following order (for a 5x5 matrix):

1:1, 0 0 0
2:1,, 3:1, 0 0
4:1;; 5:1, 6:l;, 0
7:1,, 8:l, 9:1,; 10:1,
11015, 12:1;, 13:l; 14:l;, 15:l |

0
0
0
0

Instead of by rows, we can also evaluate factors by columns:

i =/ _Z‘,Iik2 (5.46)

i-1
|ji:|1(aij_2|ik|jkj, j=i+1i+2,..,n
i 1

k=
Evaluation order is then the following for a 5x5 matrix):

[1:1, O 0 0
2:1,, 6:1, 0 0
3y, 7:1, 10:l, 0
4:1,, 8:1,, 11:1,, 13:1,,
15:ls, 9:ls, 12:l5; 14:l, 15:l )

o O O O

Outline of an algorithm for computing the LL factors:

A nice property of the algorithm is that we don’t neeed to store the original matrix throuout
the algorithm When a specific element of L is computed, it can immedially replace the
corresponding element of A since this is not needed any more. The algorithm assumes that diagonal
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and below diagonal elements of A are stored in the input matrix, while elements beyond diagonal
do not need to be stored because A is symmetric.

6 GRAM-SCHMIDT (GS) ORTHOGONALIZATION

In this Section, a procedure of obtaining a set of mutually orthogonal (or orthonormal)
vectors from an arbitrary set of linearly independent vectors by the process called Gram-Schmidt
orthogonalization is described. This process can be used for orthogonal decomposition of a matrix,
which includes the known QR factorization described in Section 6.2, where a matrix is factorized as
a product of an orthogonal and upper triangular matrix. This can be used for calculating eigenvalues
and eigenvectors of the matrix (by application of an iterative procedure known as the QR iteration)
or for solution of systems of equations, which is a method of choice when the system matrix is ill
conditioned.

After the QR factorization, a non-standard form of factorization (67) is described in Section
6.3, where one obtains an orthogonal matrix (whose columns are orthogonalized columns of the
original matrix) expressed as a product of the original and upper triangular matrix. The factorization
will not be used in practice for solution of equations (although this is possible, as described in
Section 6.3.2), but is described for instructive purposes. The reader can skip this section without
harm.

We have vectors v,, Vv,, ..., V., where m<n (n is the dimension of the vector space). We
want to construct m mutually orthogonal vectors g, which are obtained from the original set of
vectors, i.e. are linear combinations of vectors v;.

6.1.1 Basic Idea

Let us have vectors ¢, and v,. We want to construct a vector g, which will be a linear
combination of these two vectors and will be orthogonal to the vector g,. The most obvious way is
to subtract from v, its orthogonal projection on q, (see Figure 6.1). This projection has direction
of g, and size

, =[val, cosp =327 0.

Iv
o]

2q,

since
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<0V, >=ay,|v.], cos¢.
The projection is then

a, =<q1,v2> =<q1,v2>
1
2 ”ql”z ”Ch”: <059, >

a, (6.0.

V2Q1 - HVZ%

and the constructed orthogonal vector g, is

—v,- Vo (6.0.

4, =V, —Vy,
' <019, >

It can be easily shown that this vector is orthogonal to g, : dot product of the above equation with
g, yields

<\V,,Q, > <\V,,q, >
<Q,,0;, >= vz—z—chql,q1 :<v2,ql>—2—ql<q1,ql>=0.
<{,.q, > <q,,9, >
V2
J2=V2-Voqu
¢ i _
Voqu g1=vi1

Figure 6.1: Construction of the next orthogonal vector.

The construction described above can be easily extended for a set of n vectors. We set

q,=Vv, (6.0.

and the subsequent orthogonal vectors are formed as

j-1
<v,q, >

q=v,-2,

q, j=23..n. (6.0.
1=1 <q|1q| >
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We can see by total induction that each ¢; generated in this way is a linear combination of vectors
V., k < j and that it is orthogonal to all q,, k < j. At the end of the procedure we therefore obtain a

set of m mutually orthogonal vectors q,, which are all linear combinations of original vectors and
are non-zero if the original vectors are linearly independent.

6.2 Modified Gram-Schmidt Orthogonalization and QR
Factorization

The Gram-Schmidt orthogonalization procedure described by (6.0 is numerically less stable
because the generated vectors tend to loose their linear independency because of the numerical
errors. A modified procedure is therefore used in practice, which is quite similar to the original one,
but the order is a bit different.

We will use a bit different notation and will denote the original vectors by a,,i=1,...,n. We
want to obtain an orthonormal basis of vectors g, from a, such that

(0;,9,)=1Vi=1..,n

6.0.
(g,,0;)=0Vi=n (
The original procedure is performed by the following steps:
al
q —
"l
k=2,...,n
= : 6.0.
qk:ak_z<qi’ak>qi , (
i=1
P
Qe =72
©ad,

In the first part of each step, an new vector is produced from subtracting form the original
vector all orthogonal projections of this vector to already computed orthogonal and normal vectors.
In this way a vector is produced that is normal to all previously calculated vector, and in the second
step this vector is normalized with respect to the Euclidean norm. If vectors were not normalized,

then we should perform division by (q;, g;) in order to obtain the correct projection.

The modified Gram-Schmidt procedure is performed in such a way that projections are
gradually subtracted from the original vector and such reduced vectors are projected on already
obtained ortonormal vectors:
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a
0, =15
"l

k=1.. j-1 : (6.47)

Vectors obtained by this process are the same since, taking into account orthonormality of
vectors q;, we have

9 =a, —(d,,8,)9, —(0,.(0,,8,)9, )0, —... =

k-1

h _Z<qj!ak>qj

j=1

We can use the Gram-Schmidt procedure for computing the QR factorization of a matrix.
Matrix Aeld™" (m>n) admits a QR decomposition if there exist an orthogonal matrix (columns
orthogonal and normalized) Qe ™™ and an upper trapezoidal matrix Rell™", such that
A=0QR.

Reduced QR factorization:
If A, _is of rank n (i.e. ahs full rank) for which a QR factorization is known, then there

exists a unique factorization of A of the form

n

A..=Q.. R (48)

where Q is orthogonal and R upper triangular, and these are submatrices of Q and R (left upper

corner). Q has orthonormal vectors of columns and coincides with the Cholesky factor H of the
symmetric positive definite matrix A"A, i.e.

ATA=R'R . (49)

This matrix is positive definite because every matrix of the form ATA is positive
semidefinite, and if Ahas full rank then it is positive definite.
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If A has full rank n then the column vectors of A form an orthonormal basis for the vector
space range(A). The QR factrorization is therefore a procedure of generating an orthonormal basis

for a given set of vectors. If A has rank r<n, then the QR factorization does not necessarily yield an
orthonormal basis for range(A) . However, it is possible to obtain a factorization of the form

R, R
TAP: 11 12 ,
Q {0 0

where Q is orthogonal, P is a permutation matrix and R; is a nonsingular upper triangular matrix of
orderr.

_ upper
A(mxn) - Q(mxn) R(nxn)
Figure 6: The reduced QR factorization.

If the QR decomposition is performed by the modified Gram-Schmidt procedure, then the
columns of A are vectors a; and columns of Q are vectors g; of the equation (47). Matrix R is
obtained by left multiplication of Aby Q' (from equation n(48), since Q is orthogonal):

R=Q'A. (50)

6.2.1.1 Case m=n

— upper
A(nxn) - Q(nxn) R(nxn) (51)

If A is non-singular and R has positive diagonal elements (by agreement), then the
factorization (51) is unique.

6.2.2 Remark: Extended QR decomposition

In fact, some QR algorithms produce the expanded trapezoid matrix R, .. In this way we have

(mxn)

Amxn = Q(mxm) R(mxn) ! (52)

where R is upper trapezoidal,
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L i<n (53)
r. = ,
" 10;i>n

and A is upper triangular, i.e. a; =0;i> j. The orthogonal matrix Q is orthogonal in the whole

space [1™", therefore its orthonormal basis could not obtain only from columns of A, but was
expanded. We will therefore call the procedure expandeded QR decomposition with Gram-
Schmidt orthogonalization.

While R is simply supplemented by zeros below the m-th row, there are different
possibilities of how to expand Q. The most obvious possibility is to successively take trial vectors
of some basis of (1", orthogonalize them with respect to already calculated columns of Q, and if
linear dependence on already obtained orthonormal vectors occurs then reject the current trial
vector and skip to the next one (since at least m-k vectors of the basis will be linearly independent

on all k vectors that are already there). Orthonormal basis vectors e, =[0, 1,0, ] can be most

conveniently taken®.

For a measure of linear dependency, we can simply take the norm of what remains after
subtraction of projections on already calculated qi.2. Some lower bound must be set on this norm,
e.g. 0.1. The norm must be such that there for sure exists such basis vector that after subtraction of
all projections on any set of lower dimensional basis vectors, the norm of the remaining vector is
greater than this lower bound. Besides, the norm should not be too small because this would
increase numerical errors (because we would allow acceptance of vectors that are almost linearly
dependent on the currently available basis vectors).

If we would also need to extend A with additional columns such that it would have a full
rank in 0", then we can proceed as follows: We first extend Q as described above. Then we extend
R to the dimension mxm by diagonal elements taking the value 1 (or maybe an average absolute
value of already calculated diagonal elements obtained by the reduced QR factoritzation, in order to
improve scaling) and out of diagonal elements taking the value 0. Then we calculate the extended A
by simply calculating the product QR by extended matrices. The extended A would in this way
have the full rank m if the original A had full rank n (because both Q and R would have a full rank).
Besides, the first n columns of A would be the same as with the original because of the zeros in R
below the upper-left nxn block.

6.2.3  Solution of Systems of Equations with QR decomposition

We are solving the system

! In special cases when there is a reason to suspect that columns of A are close to the first m of these vectors, we can
reverse the order in which these vectors are taken, in order to minimize the possibility of rejecting vectors.
2 In fact, the ratio between this norm and norm of e; should be taken, but norm of e; is 1.
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A =b (54)

(mxn) X(na) = P

We assume we have factored matrix A as a product of an orthogonal matrix Q and an upper
trapezoid matrix R:

A(mxn) = Q(mxm)R(mxn) (55)
where Q has a full rank m, and
i>j=r=0. (56)
If the m>n then the system
Ay X(t) = By (57)

is overdetermined (i.e. there are moer equations ) and can therefore be solved in the least square
sense.

6.2.3.1 Case m=n

We first limit ourselves on the case m=n, i.e. the number of equations is the same as the
number of variables. We solve the system by first setting (since Q" =Q")

y=Q'b . (58)
and then solving the system
Rx=y (59)

Equation (59) is a system with an upper triangular matrix whose solution is described in
Section 8.4.1.

6.2.3.2 Case m>n

In this case we have an overdetermined system with more equations than unknowns.
Solution of such systems is described in Section 7.
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6.3 Non-standard factorization by using the GS

In this chapter a non-standard form of a factorization obtained derived from the Gramm-
Schmidt orthogonalization is used. A standard form of factorization known as QR decomposition is
described in Section 6.2. The Section 6.1.1 explains the idea of Gram-Schmidt orthogonalization
that is used for derivation of both forms, while the procedure described in this Section is specific for
non-standard form.

In standard form, we perform the QR factorization in such a way that the original matrix is a
product of an orthogonal and upper triangular matrix produced by the factorization. The orthogonal
matrix is calculated first ant the upper triangular matrix is obtained by left multiplying the original
matrix by its transpose (since the inverse of the orthogonal matrix equals its transpose).

In the non-standard factorization described here, we express theorthogonal matrix that is
obtained from the original one, as a product of the original and upper triangular matrix. Again,
columns of the orthogonal matrix are orthogonalized vectors obtained from columns of the original
matrix. The orthogonal matrix is obtained by a similar Gram-Schmidt process as in QR
decomposition, while the upper triangular matrix is obtained simultaneously with the orthogonal
matrix by performing equivalent operations as on the orthogonal matrix, on the matrix that is first
set to identity matrix (and these operations transform it to the upper triangular form such that its left
product with the original matrix equals the orthogonal matrix). The method will not be often used in
practice, but it is described here because it is instructive.

After the Gram-Schmidt orthogonalization, each orthogonal vectors q; is a linear
combination of the original vectors. We can therefore write

Q(mxn) = \/(mxn)A(nxn) ’ 1(660)

where A is a matrix of coefficients of these linear combinations®, V is the matrix whose columns are
the original vectors v; and Q is the matrix whose columns are orthogonal vectors q;. The above

equation can be written by columns, which gives orthogonal vectors expressed as linear
combination of the original ones:

Remark: the following derivation should be checked. The final procedure is correct,
however, because the functions described in Section 6.3.3 were all verified.

q,=>. 3.V, j=12,.,m. (6.0.
k=1

! Beware of different notation with respect to the usual notation. Here V denotes the original matrix and A denotes an
upper triangular matrix, while in most commonly, A is used for the original matrix and R is used for the upper
triangular matrix.
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This comes from

(qi)i = Gj :kzz‘vikakj :kzr:‘akivik » 4 :zakj (VT )k '

It is seen from (6.0 and (6.0 that matrix A is upper triangular with unit diagonal elements:

* 'rr) *

01 .. *
A= (6.0.

000 1

Evaluation of orthogonal vectors ¢; can be accompanied by simultaneous evaluation of
coefficients of A. The complete procedure is then the following:

j=1:
set
q, =V, (6.0.
and
a, =1 a,=0k=23,..,m (6.0.
for j=2,3,..m:
set
=o<vy,q, >
a; =V, +§_qu : (6.0.
and
a; =1, a, :g—z;:”g: :akl, k=12,..,j-1. (6.0.

Equation (6.0 follows from (6.0 and (6.0, which give
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Zo<v,q > Zo<v,q >
g, =V +y ——rX——q,=v + ! a,Vv a.v, , (6.0.
! i <(q,,q, > I ! IZ:1: <q|1q|>kz1: e Z o

where (6.0 was taken into account twice. Equating terms at v, gives (6. 0, where it is taken into
account that a, =0 for | <k .

<Vv;,q, >
<q,.9, >
therefore individual contributions to all a, in (6.0 are evaluated when specific coefficient is
available. The algorithm step ((6.0, (6.0) is therefore actually the following:

In the algorithm the coefficient — g, should be evaluated only once for each (j,l),

set
q, =V, (6.0.

and
a,=1 a,=0k=23,...m (6.0.

for j=2,3,..m:

set
a; =1 a =0,k=12,..j-1 (6.0.

and
q;=Vj, (6.0.
4; =q; +—%q., (6.0.

and
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_a _SVa> _
ay =y —————3y, kK=12,..,I. (6.0.
<dq;.9, >

6.3.1 Orthogonalization with normalization

This operation generates vectors which are mutually orthogonal and whose Euclidian norm
equals 1. The procedure is practically equivalent except for the normalization factor that is applied
at the end of calculation of each column of Q. The procedure follows those described in (6.0 to (6.0,
except that orthogonal vectors are normalised immediately after they are constructed and because of
that some of the coefficient in the above equations become 1. Orthogonalisation with normalisation
is approximately as fast as without normalisation, but is more convenient for solution of systems of
equations. Matrix A does not have units in diagonal any more:

* % *
o > .. =
A= (6.0.
000 *
The procedure is the following:
j=1:
set
0=~ Vl\flvl - (6.0,
and
a,=1 a,=0k=23,...m (6.0.
for j=2,3,..m:
set
a; =1 a,=0k=12,.,j-1 (6.0.
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and
q,=Vv;. (6.0.
set
q;=9;—<V;q,>q, (6.0.
and
8 =a3—<V;,q, >y, k=12,.,1. (6.0.
for k=12,..., ]
set
Ay S R (6.0.
<q;.q; >
set
q; S (6.0.

6.3.2  Solution of Systems of Equations with Gram-Schmidt
Orthogonalisation (non-standard form)

In Gram-Schmidt Orthogonalisation we construct from matrix of original vectors (columns)
V an orthogonal matrix Q and upper trapezoid matrix of coefficients A so that

Q) = VimyPmmy s M N (6.0.

For solution of system of equations only square matrices will be considered here, i.e. m=n.
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We can solve the system

Vx =b (6.0.

by introducing a new variable y = A™'x . The above system then falls to one orthogonal system and
matrix multiplication:

Qy=b (6.0.

and

X=Ay . (6.0.

Solution of (6.0 is described in Section 8.2 while (6.0 is just a simple matrix multiplication.

6.3.3 Implementation of GS (non-standard form)

In 10ptLib the following functions are used:
void GSortplain(matrix V,matrix Q,matrix A)
- From original matrix Vi) (m>n), a matrix with mutually orthogonal (but not normal)
columns Q () are calculated such that Q =V A. All matrices must be

allocated and of appropriate dimensions.

and upper triangular A

mxn

void GSortnormplain(matrix v,matrix g,matrix a)
- Similar as GSortplain, only that Q is orthogonal (i.e. columns are not only mutually
orthogonal but also normalized).

void GSortO (matrix V,matrix *Q,matrix *A)

and

int GSortnorm0O (matrix v,matrix *qg,matrix *a)
are comfortable forms of GSortplain and GSortnormplain. Matrices of results are allocated
or reallocated with the appropriate dimensions if necessary.

vector solvGS0O (matrix M,vector b,vector *x)
Solves a system of equations Mx=b in such a way that the Gram-Schmidt

orthogonalization is first performed by GSortnormplain and then the system is solved
according to (0 and (0. The intermediate storage necessary for operations is allocated and then
released within the function. Because of this, function is not efficient and should not be used for
important computations.
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The systems can instead be solved by three calls — first to orthogonalization
(GSortnormplainO (M, &Q, &A)) and then by solvortnormO (Q,b, &x) to solve the
orthogonal system (0 followed by matprodvecO (2, x, &x) to perform matrix multiplication (0.
Solution of the orthogonal system can also be performed by mattranspprodvec (Q, b, &x) .

matrix solvmatGSO (matrix M,matrix B,matrix *X)
- This function is similar to so1vGSO0, but it solves several systems of equations at once,
where B contains right-hand sides as its columns and solutions are stored in columns of X.

7 OVERDETERMINED SYSTEMS

In this Section we describe solution of over determined systems of equations where we
have more equations than unknowns:
A =b

X m>n. (61)

(mxn) “¥(nx1) (mx1) ?

We assume that rank of A is n. In general this means than we can not simultaneously satisfy all the
equations. We therefore search for the solution in a least squares sense, i.e. we are searching for
such xo for which the sum of squares of differences between left-hand and right-hand sides is
minimal:

X, =argmin ||Ax—b||22 . (62)

xel "

The function to be minimized is expressed component wise as
m n 2
2
Jax-bl: =3 S(ax)-)
i= j=

A unique solution X, exists (under assumption rank A=n). This is exactly the solution of
equation

AT Ax=A"b , (63)

which is obtained by left multiplying the equation by A" . This system is called the normal system
of equations.

We can verify that the solution of (63) is also the solution of (62). We write

B=A"A, c=A'b. (64)
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Then we have

|Ax-b|; =(Ax-b, Ab—b)=(Bx—c) B (Bx—c)-c'Bc+b'b .

Matrix B is positive definite: ¥x,x" Bx=x" A’ Ax=||Ax||22 >0. This is 0 only when Ax=0,

which is possible only when x =0 because matrix A has a full rank n.

If B is positive definite then also B™ is positive definite. The smallest value of the quadratic
form therefore equals 0 and this is when equation (63) holds, while other terms are independent of x

and represent the sum of squares of differences in the solution. Because A"A =B is not singular,
the solution is uniquely defined.

System (63) can be calculated by the Cholesky decomposition of B,

ATA=B=V"V (65)

where V is upper triangular, which is followed by solution the lower triangular system

V'y=c (=A"b) (66)

and the upper triangular system

VX, =Y . (67)

The described classical way is not recommendable because sensitivity of the system can be
strongly increased at explicit calculation ob B (i.e. the matrix can become very ill conditioned). Let

us suppose that eigenvalues of B arranged in decreasing order are o/ . Spectral sensitivity of A is

2
then % , While spectral sensitivity of B is (% j . More recommendable is solution through

orthogonal transformations.

7.1 Orthogonal methods

The basis of the orthogonal methods is the QR factorization of the matrix A, to a product of
an orthogonal matrix Q and upper trapezoid matrix U:

A(mxn) = Q(mxm) U(mxn) ! (68)
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where
.
=1
9 0=l (69)
I>]=u; = 0
We calculate the solution of the orthogonal system
z=Q'b , (70)

and we write U and z in block form,

Van
U{()( ) } Z{yn } 1)
((m=n)xn) Wm—n

Taking into account the decomposition (68) and block form (71), we have

B=ATA=(QU) (QU)=U"U=V"V . (72)

This means that upper triangular matrix V_is the Cholesky factor of the normal matrix A" A. This

means that with the orthogonal methods, calculation of the normal matrix ATA and its factorization
is avoided. Matrices B in (71) and (65) are the same if we take care in the orthogonal decomposition
that all diagonal elements of V are positive.

We can further calculate
c=A'b=(QU) b=U'Q'b=U"z=V"y . (73)

This means that y, which is the upper part of the transformed vector z, solution of the lower
triangular system (66).

The least squares solution is obtained by solution of the upper triangular system

VX, =Y . (74)

Vector w, which is the lower part of z, also has its meaning — square of its Euclidean norm is
the sum of squares of differences:

| Ax=b]l; =[wlj (75)

This is derived as follows:
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| Ax-b} =|QUX, ~Qz|: =] Ux, 2} =] Vi~ +]wl]} = w]

Remark on QR decomposition:
The QR decomposition is often calculated in the reduced form, such that

A(mxn) = Q(mxn) U(nxn) ’ (76)

In this case Q must be supplemented by orthogonal columns up to full rank m.

8 SPECIAL SYSTEMS OF EQUATIONS

8.1 Orthogonal systems
By the term orthogonal system, we will refer to a systems with orthogonal matrix, i.e. a
matrix with orthonormal columns (and consequently rows). A more general class of systems with
matrices whose columns are mutually orthogonal but not normalized is described in Section 8.2.
For orthogonal real matrices® the following equation is valid:
QQ =Q'Q=1; Q*=Q" . (77)
Therefore, the system of equations with an orthogonal matrix
Qx=Db (78)

is solved simply by multiplying the vector of right hand sides by the transpose of the system matrix:

x=Q' b (79)

! Equivalent for matrices defined over complex field is unitary.
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8.2 Systems with Matrices that have Orthogonal Columns

Let’s have a system

Qx=b, (8.0.

where Q is orthogonal, i.e. such that its columns are mutually orthogonal (dot product zero). The
above system can be written in the form

b=x0Q,+xQ,+..+X.Q,, (8.0.

where Q, denotes the i-th column of Q and x;, denotes the i-th component of vector x. If the
equation is dot-multiplied by Q,, we obtain

<b,Q, >=x, <Q,,Q, >, (8.0.

which follows from orthogonality of Q; and Q; foreach j=i. It follows that

X; :% (8.0.
If columns of Q are also normed in the Euclidian norm, then we simply have
X; =<b,Q; >, (8.0.
which simplifies to
x=Q'b. (80)
If columns of Q are orthonormal then Q is an orthogonal matrix for which Q* =Q".
8.2.1  Inverse of a Matrix with Orthogonal Columns
We search for an unknown matrix X such that
QX=1. (8.0.
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For the i-th column of X we have
QX =e,, (8.0.

where e, is the i-th unit vector (i.e. component i is 1 and all others are 0). It follows from (8.0 that

3 - <QJ1QJ > <QJ1QJ >
or finally
41 9
[Q ]ij 200 > Q.Q,> (8.0.

If clolumns of Q are also normalised with respect to the Euclidian norm, then we have simply

Q] =q,. (8.81)

8.2.2 Component-wise verification

We verify some of the equations from Section 8.2 in component-wise notation. Let’s have a
system

Ax=b. (8.82)
a11X1+a12X2+"'+a1an ail a12 aln
a +a, X, +...+a, X a a a
A(mxn)x(ml) _ 21X1 2272 2n"n _ X1 21 + Xz 22 + o+ Xn 2n
amlxl + amzxz +o.t amn Xn a'm1 am2 amn
(8.83)

= X3, + X,a, +...X,a,
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With a, we denote the i-th column of A.

For product of two matrices it holds

A Xy

[A >gw]j= %X x| (8.84)

(mxn)

| @mk Xk |

i.e. the j-th column of the product equals product of the left matrix with the j-th column of
the right matrix. In the above equation, the Einstein summation rule was applied, i.e. we have

summation over indices that are doubled.

Let’s have a matrix Q whose columns are mutually orthogonal:

aid; = quiqkj =9 ||qi||2 , (8.85)
k=1

Lii
where o :{O Ii JJ}.
i

Product Q'Q =D is a diagonal matrix because
[QTQ ij =<0;,d; >:5ij||qi||2’ (8.86)

where g, is the i-th column vector of matrix Q.

A special case are orthogonal matrices which in addition to (8.0 have normed columns,
such that

<Q;,q; >=9; (8.87)
For such a matrix the following is true:

Q'Q=QQ" =1. (8.88)
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8. Special Systems of Equations
8.3 Systems of Equations with Matrix with Orthogonal Columns
(8.89)

Qx=b,
(8.90)

Let’s have a system

where Q is orthogonal matrix. It follows that
n
b= X0: + X0, +..+ X0, = ZXka '
k=1

where q is the i-th column of Q. After multiplication of the above equation with qiT from left we
(8.91)

<b,q; >=X <q;,q; >
(8.92)

obtain

and so
X, = < b,q; > .

o
(8.93)

Solution of the system can is obtained very simply. This can be used for formulae for inverse of an

orthogonal matrix:
QX=1, :[Qx]i =Qx; =¢;,
(8.94)

_<&.q;> Gy

ol ff

using (8.0 we have
[Xi]j = Xji

[(\T1 ij = qjiz = il
”qi” quiqki

k=1

or
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If columns of Q are also normed with respect to the Euclidian norm, then the denominator
of the above equation equals 1.

8.4 Triangular Systems

8.4.1  Upper Triangular Systems

We solve the system

Ax=b), (8.96)

where A is upper triangular, i.e. elements below diagonal are zero, see (3.0. The system looks like
this:

0 a, a, || X, |=| b (8.97)
0 0 0 a,l||x, b,
The above equations written in reversed order are:
+a,,X, =b,
ta, Xy ta X, = bn—l
+ an—2n—2Xn—2 + an—2 n—an—l + an—Z an = bn—2 (898)
a; % +... +a,1X +a,,X, = bl
The solution is evaluated backwards:
b
X, = (8.99)
ann
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X :(bi - Zaikxk]/a“, i=n-1,n-2,...,.1 (8.100)

k=i+1

8.4.2  Lower Triangular Systems

We solve the system
Ax =D, (8.101)

where A is lower triangular, i.e. elements below diagonal are zero, see (3.0. The system looks like
this:

A X b
a, 0 .. 0|x b
8, 8y .. .. || X |=|b, (8.102)
0| ..
anl anZ ann Xn bn
The solution is evaluated forwards:
xlzi, (8.103)
a;
i-1
xiz(bi—Zaikxkj/a", i=2,3,..,n (8.104)
k=1
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9 NUMBER OF OPERATINOS FOR STANDARD MATRIX
OPERATIONS

9.1 Basic Operations

9.1.1 Matrix and vector multiplications:

Matrix multiplications:
Con =AnpB ot N=2mn p (vsak element priblizno p mnozenj in p seStevanj)

C.A B :N=2n

nxn® “nxn T nxn =

Matrix times vector:

Cra =A,.0a 0 N=2mn (vsak element priblizno n mnozenj in n sestevanj)

Cou = A0, N =2n* (vsak element priblizno n mnoZenj in n sestevan;)

Scalar product:

T
nx1

c=a,, b,: N=2n (n mnozenj in n sestevanj)

9.2 Special systems of equations

9.2.1.1 Lower triangular system

o1
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Lo Yos =bos i< j =1, =0,1, =12 N :%nz—%n

n-1
this follows from N = Z(n—r) :%n2 —%n

r=1

9.2.1.2 Upper triangular system

Unxn yn><l = b

nx1 !

i>j=u,=0_N :%n2+%n

Matrix Decompositions With

this follows from N :Z(n—i+1):%n2+%n ; The difference with respect to lower
i=1

triangular system is that diagonal elements are different than 1, which adds n divisions.

. . 1 1 e -
The total number of operations requires En2+5n multiplications or divisions and

2

1 1 . . - : o .
—nz—zn summations or subtractions. This is four times as much multiplications as Gaussian

elimination and twice as much summations, beside the n(n —1)/2 square roots.

9.2.1.3 Orthogonal system

annynxlzbnxl’ QTQ:| N =3n2—3n,

i.e. 2n?> —2n multiplications and n> —n summations

9.3 Factorizations

9.3.1.1 LU factorization
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Solution of equations Ax=b: N :%n3 +n’ —%n

(factorization + lower triangular + upper triangular system)

Solution of m systems of equations: N = % n®+mn’ —% n

Determinant of a matrix detA, . : %n3 + % n-1

(factorization + n multiplications of diagonal terms of U)

Inverse matrix: n° operations
(by solution of AX =1, solution with the s-th unit vector on the right is the s-th column of

X) Decomposition: N :%n3—§n operations, lower triangular with e; as right hand sides (less
operations): Lo lnely upper triangular: n7+n2 toal: n®

6 2 3 S /20 2
9.3.1.2 QR Factorization

9.3.1.2.1 Reduced factorization with the modified Gram-Schmidt method:

Amxn:menﬁnxn;QTQ:|1i>j:>rij:0: N:2mn2
Solution of a system of equations:

N =2mn® for factorization, 3m?—-3m for solution of the orthogonal system, and n’
operations for upper triangular system, together.

9.3.1.2.2 QR factorization with Givens method

Ao =QunRyn: Q'Q=1,i>j=r=0: N:[En —Enj+(—n ——nj+—n -=n°*-=n

N=2n*-2n
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e Ly square roots, 2e_2n divisions or multiplications and En‘”’—lnz—ln
2 2 3 3 3 2 6
summations

Solution of a system of equations:
N =2n®-2n for factorization, 3n°>-3n for solution of the orthogonal system, and n?

operations for upper triangular system, together 2n”+n”—5n operations.

9.3.1.2.3 QR factorization with the Housholder method

A =QunR,: Q'Q=1,i>j=r=0:N =(n—1)+(§n3+O(n2))+(§n3+o(n2)j - twice
less multiplications as the Givens method and twice as much as Gauss elimination. Total number of
operations is for 1/3 less than at Givens method and twice greater than with Gauss elimination.

2 L e 2 .
n—1 square roots, §n3 +0(n?) divisions or multiplications and gns +0(n*) summations.

Solution of a system of equations:

4 .. .

§n3+0(n2) for factorization, 3n®>—3n for solution of the orthogonal system, and n”
operations for upper triangular system.

9.3.1.3 LDMT factorization

Ava =DMy 1< =51, =0Am, %0, % j=d,=0: N=_n’

nxn = nxn nxn ?

9.3.1.4 LDLT factorization

nx nxn=— nxn n><n’

A,.=L,D,L |<j:>|ij=0,i¢j:>dij=0;N:%n3

9.3.1.5 Cholesky factorization
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N =%n3+0(n2)
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