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1 INTRODUCTION 

 

This document introduces the basics of matrix computations and especially matrix 

decompositions, which are also used in the Investigative Optimization Library (IOptLib). 

 

The document was created by putting together a number of notes in MS Word created by the 

myself for memorizing a number of results from linear algebra that are relevant for optimization 

and other fields of numerical analysis. 

I have created a large portion of these notes during my undergraduate study when I have 

practicing numerical software development for training, hobby and to earn some additional money 

that allowed me to cover more than just the basic needs, e.g. a bicycle or a one week trip to Paris. 

Another package of the notes was created when finishing the graduate degree on physics, when I 

have also put some hand written notes form the “Mathematics 1” subject into electronic form. 

The collection was further supplemented during my Ph.D. study at the University of 

Swansea in the U.K. Then, one day when looking at all those scattered documents that contained 

short notes on individual topics, I realized that it would be much easier for myself to have all the 

material in a single document. At that time, the MS Word has also advanced enough to allow 

creation of longer documents with lots of formulas and images
1
. So I have reserved a weekend and 

put all the documents in a single files, arranged titles and references and formatted the document in 

such a way that it acquired a relatively readable form. 

 

After that, I was still adding notes from time to time when I needed something to memorize, 

and this was much easier to do in a settled document than in a group of scattered files. However, 

many portions of the script are not in the form I could recommend for studying. It must be 

understood that some of these notes emerged from yellowed old notes which represented just a very 

condensed hints on individual topics, and there are many portions that I didn’t touch (except for 

formatting) since they were put in electronic forms. But when I need to look back at something and 

I notice that this is very awkwardly written, I usually take some time to correct that. In this way I 

hope that the script will one day become a useful and easily digestible source of reference 

information for people like myself, who are not truly experts in linear algebra but use it in everyday 

life. 

 

Author of this script, Igor Grešovnik  

 

 

                                                 
1
 For a long time, at least over the decade, this was the major obstacle for writing scientific and engineering documents 

in MS Word, and this is probably the main reason that Tech remained the desktop publishing program of choice in 

many scientific and not so rare engineering environments. Because for people who did not have problems with learning 

programming languages and other computer related skills, it was far easier to work with a program where you couldn’t 

see the result of your work instantly than with a program that crashed for nothing every couple of minutes.  
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2 BASICS OF MATRIX THEORY 

 

2.1 Basic terms 

 

2.1.1.1 Inner product 

 

 

The standard inner product in n  is defined by 

 

 

 
1

,
n

i i

i

x y


x y  . (1) 

 

2.1.1.2 Matrix basic terms 

 

A matrix is a rectangular table of numbers or other quantities that can be added or 

multiplied. Most common is use of matrices that are defined over the real (real matrices) or 

complex (complex matrices) field. We will usually denote matrices by large bold letters, where 

dimensions (the number of rows and columns) will sometimes be specified in subscript, e.g. m nA  

denotes a matrix with m rows and n columns. A matrix where one of the dimensions equals 1 is 

often called a vector, and is interpreted as an element of a coordinate space. A 1 n  matrix is called 

a row vector and a 1n  matrix is called a column vector. Matrix components will usually be 

denoted by the corresponding letter, but not written in bold, with indices in the subscript, e.g. ijA  

will mean the element in row i and column j of the matrix A. Sometimes components will be 

denoted by small letters, i.e. ija . A square matrix is those that has the same number of rows and 

columns. 

 

Matrix is normal if it commutes with its conjugate transpose: 

 

 * *A A AA  . (2) 

 

  

 

Adjoint matrix of a n-by-m matrix A is its conjugate transpose: 

 

  *

,, j ii j
A A  (3) 
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where subscripts denote the i,j-th component of the matrix, with 1 i n   and 1 j m  . This is 

expressed as 

 

 * TA A  . (4) 

 

The conjugate transpose of a matrix or its adjoint matrix is also denoted by HA  (H coming from 

Hermitian conjugate) 

 

 

 

2.1.1.3 Hermitian and unitary matrices 

 

Hermitian or self-adjoint matrix is a square matrix that is equal to its conjugate transpose, 

i.e.  

 

 *A A . (5) 

 

Hermitian matrices are normal, and the finite dimensional spectral theorem applies, which 

means that every Hermitian matrix can be diagonalized by a unitary matrix. Eigenvalues of every 

Hermitian matrix are real and eigenvectors with distinct eigenvalues are orthogonal. 

 

The sum of two Hermitian matrices is Hermitian, and inverse of an invertible Hermitian 

matrix is also Hermitian. The product of two Hermitian matrices is Hermitian only if they commute.  

 

Anti-Hermitian or skew Hermitian matrix is a matrix for which *  A A . Entries in the 

main diagonal are pure imaginary. The same is true for eigenvalues. 

 

 

Unitary matrix is a square matrix that satisfies the condition 

 

 * * U U UU I , (6) 

 

where I is the identity matrix. A matrix is unitary if it has an inverse which is equal to its 

conjugate transpose. Unitary matrix preserves the standard inner product on n , 

 

 , ,Ux Uy x y  (7) 

 

If A is a square matrix then the following conditions are equivalent: 

 

1. A is unitary 

2. *A  is unitary 

3. The columns of A form an orthonormal basis of n  with respect to the standard 

inner product on n . 
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4. A is an isometry (i.e. distance preserving isomorphism
1
) with respect to the norm for 

this inner product. 

 

A unitary matrices are calles special if its determinant is 1. 

 

Unitary matrices are normal , therefore the spectral theorem applies to them. Every unitary 

matrix U has decomposition of the form 

 

 *U VΣV , (8) 

 

where V is unitary and Σ  is diagonal and unitary. 

 

Real unitary matrices are orthogonal matrices and real hermitian matrices are symmetric 

matrices. 

 

 

2.2 Polar Decomposition 

 

Polar decomposition is a matrix decomposition of the form 

 

 A UP  , (9) 

 

where U is an unitary matrix and P is a positive-semidefinite Hermitean matrix. The decomposition 

always exists, and if A is invertible then the decomposition is unique and P positive definite. The 

matrix P is given by 

 

 *P A A , (10) 

 

where *A  is a conjugate transpose of A. A positive definite Hermitean matrix has a unique positive 

square root. The matrix U is then given as  

 

 1U AP  . (11) 

 

In terms of the singular value decomposition, we have 

 

 

*

*





P VΣV

U W V
 , (12) 

                                                 
1
 Isomorphism is a bijective map f such that both f and f

-1
 are homomorphisms (i.e structure preserving maps - 

     u v u v    ) 
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which confirms that P is positive-semidefinite and U unitary. 

 

Determinant of A can be expressed, according to (9), as 

 

 det det det ir e  A P U  , (13) 

 

which gives the corresponding polar decomposition of the determinant of A, since 

det detr P A  and det ie U . 

 

A matrix can also be decomposed as  

 

 A P U , (14) 

 

where U is the same as before and  

 

 1 * *   P U PU AA WΣW  (15) 

 

The matrix A is normal if and only if  P P . Then UΣ ΣU  and it is possible to diagonalize U 

with a unitary similarity matrix S that commutes with Σ , giving * 1SUS Φ , where Φ  is a 

diagonal unitary matrix of phase ie  . Putting, *Q VS , the polar decomposition can be re-written 

as 

 

   * *A QΦQ QΣQ  , (16) 

 

so A also has a spectral decomposition 

 

 *A QΛQ   (17) 

 

with complex eigenvalues so that * 2ΛΛ Σ  and a unitary matrix of complex eigenvectors Q. 

 

2.3 Eigenvalues and eigenvectors 

 

Let n nA .   is called an eigenvalue of A if there exists a non-zero (non-null) vector 
nx  such that Ax x . x is an eigenvector associated with λ. The set of eigenvalues of A is 

called the spectrum of A denoted by   A . x and y are the left and right eigenvectors of A 

associated with λ, respectively, if 
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 , H H  Ax x y A y  . (18) 

 

The eigenvalue corresponding to the eigenvector x can be determined by computing the 

Raileigh quotient  /H H  x Ax x x . Eigenvalue λ is solution of a characteristic equation  

 

    det 0Ap    A I  , (19) 

 

where  Ap   is the characteristic polynomial. Because this is a polynomial of degree n, there exist 

n eigenvalues of A that are not necessarily distinct. The following is true: 

 

 
   

       
11

det ,

,

n n

i i

ii

T H

tr 

   



 

 

A A

A A A A

 (20) 

 

From the first relation we see that a matrix is singular if it has at least one zero eigenvalue, since 

 
1

0 det
n

A ii
p 


 A . 

 

If A has real entries, then coefficients of  Ap   are real and therefore complex eigenvalues 

occur in complex conjugate pairs. 

 

The maximum module (absolute value) of the eigenvalues of A is called the spectral radius 

of A and denoted by 

 

  
 

max
 

 



A

A  (21) 

 

λ is an eigenvalue of A iff   is an eigenvalue of HA . Therefore    H A A . Also 

      A A  and     
kk k   A A  

 

Let A be a block triangular matrix 

 

 

11 12 1

22 2

k

k

kk

 
 
 
 
 
 

A A A

0 A A

0 0 A

 . (22) 

 

Because        1 22 ...A A A Akkp p p p       , the spectrum of A is union of the spectra 

of each diagonal block. As a consequence, if A is triangular then its eigenvalues are its diagonal 

elements. 
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For each eigenvalue of matrix A the set of eigenvectors associated with  , together with the 

null vector, identifies a subsubspace in n  which is called the eignespace associated with  and 

corresponds by definition to  ker A I . The dimension of the eigenspace is 

 

     dim ker n rank    A I A I ,  (23) 

 

and is called geometric multiplicity of the eigenvalue λ. It can not be greater than the algebraic 

multiplicity of λ, which is the multiplicity of λ as a root of the characteristic polynomial. 

Eignevalues that have geometric multiplicity strictly less than algebraic multiplicity are called 

defective.  

 

The eigenspace associated with an eigenvalue of the matrix A is invariant with respect to 

Ain the sense of the following definition:  

 

A subspace nS  is called invariant with respect to a square matrix A if S SA , where 

AS is S transformed through A. 

 

 

2.4 Spectral theorem 

 

 

 

2.5 Similarity transformations, Schur Decomposition & Spectral 

Decomposition 

 

Similarity transformation is transformation of the form 

 

 1A C AC   (24) 

 

where C is a square nonsingular matrix having the same order as A. We say that matrixes A 

and 1C AC  are similar matrices. If C is unitary then matrices are unitary similar. Two similar 

matrices have the same spectrum and the same characteristic polynomial.  

 

We can easily check that if  , x  are eigenvalue-eigenvector pair for A then  1, 
C x  are 

eigenvalue-eigenvector pair for 1C AC  since  1 1 1 1    C AC C x C Ax C x  
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Matrices AB  and B A , n mA  and m nB  are not similar, but satisfy the following 

property: 

 

        \ 0 \ AB BA 0 , (25) 

 

i.e. AB  and B A  share the same spectrum apart from null eigenvalues, so that 

    AB BA . 

 

2.5.1 Schur Decomposition theorem 

 

Given n nA , there exists an unitary matrix U such that 

 

 

1 12 1

2 21
0

0 0

n

nH

n

b b

b









 
 
   
 
 
 

U A U U A U T  (26) 

 

where i  are eigenvalues of A. 

 

It follows that every square matrix A is unitary smilar to an upper triantular matrix. Matrices 

T and U are not necessarily unique.  

 

 

Among the others, the Schur decomposition theorem gives rise to the following results: 

 

Every Hermitian matrix is unitary similar to a diagonal real matrix. Every Schur 

decomposition of a Hermitan matrix is diagonal: 

 

  1

1,...,
H

ndiag     A A U AU  (27) 

 

It turns that AU UΛ , i.e. i i iAu u  for 1, ,i n , i.e. column vectors of U are 

eigenvectors of A. Since eigenvectors are mutually orthogonal, a hermitean matrix has a set 

of orthogonal vectors that generate the whole space n . Furthermore, it can be shown that a 

matrix A of order n is similar to a diagonal matrix D iff the eigenvectors of A form a basis in 
n . 

 

Spectral decomposition (or eigendecompozition) of a normal matrix: 
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A matrix n nA  is normal iff it is unitary similar to a diagonal matrix. As a consequence, 

a normal matrix admits the following spectral decomposition:  

 

 
1

nH H

i i ii



 A UΛU u u  , (28) 

 

with U being unitary and Λ  diagonal. 

 

 

 

Let A and B be two normal and commutative matrices. Then the generic eigenvalue i  of 

A B  is given by the sum i i i    , where i  and i  are eigenvalues of A and B associated with 

the same eigenvector. 

 

There are nonsymmetric matrices that are unitary similar to diagonal matrices, but they are 

not unitary similar. 

 

 

2.5.1.1 Canonical Jordan form 

Schur decomposition cnan be improved as follows. 

 

Let A be any square matrix. Then, there exists a nonsingular matrix X which transforms A 

into a block diagonal matrix J such that 

 

       
1 2

1

1 2, , ...,
nk k k ndiag     X AX J J J J , (29) 

 

which is called a Jordan canonical form. j  are eigenvalues of A and   k k

kJ    is a Jordan 

block of the form  1J    for k=1 and  

 

  

1 0 0

0 1

1 0

1

0 0

kJ











 
 
 
 
 
 
  

 . (30) 

 

 

If an eigenvalue is defective, the size of the corresponding Jordan block is greater than one. 

Therefore, a matrix can be diagonalized by a similarity transform iff it is nondefective. 

Nondeffective matrices are therefore called diagonalizable. Normal matrices are diagonalizable. 
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2.6 Singular Value Decomposition 

 

The Singular value decomposition (SVD) can be seen as generalization of the spectral 

theorem to arbitrary matrices (not necessarily square). For a m-by-n matrix over the field K of real 

or complex numbers A there exists a factorization of the form 

 

 

       

; ; ; 0;

T

m n m m m n n n

T T

ii i ij i j

   


      

A U Σ V

U U I V V I

 , (31) 

 

where U is a m-by-m unitary matrix over K, Σ  is m-by-n trapezoid matrix with nonnegative 

numbers on the diagonal and zeros off the diagonal and V is a n-by-n unitary matrix over K. Such 

decomposition is called a singular-value decomposition of M. A common convention is to order the 

values ii ii  Σ  in non-increasing fashion. In this case, the diagonal matrix  is uniquely determined 

by M (but the matrices U and V are not). 

 

The matrix V contains a set of orthonormal “input” vectors for “analysis” basis vector 

directions for A, the matrix U contains a set of orthonormal “output” basis vector directions for A, 

the matrix Σ  contains the singular values, which can be understood as scalar “gain controls” by 

which each corresponding input is multiplied to give a corresponding output. 

 

 

 

A non-negative number   is a singular value of A only if there exists unit-length vectors u 

in mK  and v in nK  such that  

 

 *and  A v u A u v  . (32) 

 

The vectors u and v are called left-singular and right-singular vectors for  , respectively. In any 

singular value decomposition, the diagonal entries of Σ  are equal to the singular values of A. The 

columns of U and V are left and right singular vectors for the corresponding singular values. The 

theorem states that 

 An m n  matrix A has at most p=min(m,n) distinct singular values. 

 It is always possible to find a unitary basis for mK  consisting of left-singular vectors of 

A. 
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 It is always possible to find a unitary basis for nk consisting of right-singular vectors fo 

A. 

 

A singular value for which we can find two left (or right) singular vectors that are not 

linearly dependent is called degenerate. Non-degenerate singular values always have unique left 

and right singular vectors, up to multiplication by a unit phase factor ie   (for the real case, up to 

sign). Consequently, if all singular values of M are non-degenerate and non-zero, then its singular 

value decomposition is unique, up to multiplication of a column of U by a unit phase factor and 

simultaneous multiplication of the corresponding column of V by the same unit phase factor. 

 

Degenerate singular values have non-unique singular vectors (by definition). If u1 and u2 are 

two left-singular vectors which both correspond to the singular value  , then any normalized linear 

combination of the two vectors is also a left singular vector corresponding to   (and similar for the 

right singular vectors). Singular decomposition is then not unique. 

 

When A is a Hermitian matrix which is positive semi-definite (all eigenvalues are 

real and non-negative), then the singular values and singular vectors of A coincide with the 

eigenvalues and eiganvectors of M,  

 

 *A VΛV  . (33) 

 

More generally, given a SVD of M, the following two relations hold: 

 

 
 

 

* * * * * *

* * * * * *

 

 

A A VΣ U UΣV V Σ Σ V

A A UΣV VΣ U U ΣΣ U
 (34) 

 

The right hand sides of these relations describe the eigenvalue decompositions of the left 

hand sides. Consequently, the squares of the non-zero singular values of A are equal to the 

non-zero eigenvalues of *
A A . The columns of U (left singular vectors) are eigenvectors for 

*
A A  and the columns of V (right singular vectors) are eigenvectors of *

A A . 

 

 

 

 

 

2.7 Examples in physics 
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2.7.1 Finite deformation tensor 

Finite deformation tensors are used when the deformation of a body is sufficiently large that 

the assumptions in small strain theory are not valid. 

 

We denote X the position vector of a particle in the initial (undeformed) state of a body 

relative to some coordinate basis. The position of the particle in the deformed state is denoted x. If 

dX  is a line segment that joins two nearby particles in the undeformed state and dx  is the line 

segment joining the same two particles in the deformed state, then the linear transformation 

between the two segments is given by  

 

 d dx F X  . (35) 

 

The quantity F is called the deformation gradient. and is given by: 

 

 X


  



x
F x

X
 , (36) 

 

or: 

 

 i
ij

j

x
F

X





. (37) 

 

F is a second order tensor and contains information about the stretch and rotation of the body. 

 

Polar decoposition: 

 

 

  F RU VR  , (38) 

 

where R is a proper orthogonal tensor representing rotation, and U and V are positive definite 

symmetric tensors that represent stretches.  U is called the right stretch and V is called the left 

stretch tensor. 

 

Spectral decompositions of U and V are 

 

 
3

1

i i j

i




 U N N  (39) 

 

and 

 

 
3

1

i i j

i




 V n n  , (40) 
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where i  are the principal stretches, and iN  and in  are the directions of the principal stretches 

(principal directions). The principal directions are related by 

 

 i in R N  . (41) 

 

Rotation independent deformation measures are introduced because rotation should not 

induce any stress in a deformable body. Rotation is excluded by multiplying R by its transpose. In 

this way we obtain the Right Cauchy-Green Tensor  

 

 3

1

= T T

k k
ij

k i j

x x
C

X X



 


 


C F F U U

 (42) 
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The spectral decompositions are 
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3 LU DECOMPOSITION 

 

L – lover triangular 
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U – upper triangular with 1 on diagonal 
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4 LDL
T

 DECOMPOSITION 

 

4.1 Introduction: General on Matrix Products 
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- LDL
T
 decomposition is possible only for symmetric matrices. 

 

Let A be any square matrix and D any diagonal matrix. Then 
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from which follows that TAA  is symmetric. 
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4.1.1 Eigenvalues and Eigenvectors 

 

Let’s have a square matrix A and let’s there exist some non-zero vector v so that 

 

 vAv  , (4.0. 

 

where   is a scalar. Then v is an eigenvector and   an eigenvalue of matrix a. We also see 

that if v is an eigenvector of a, then also vk  is eigenvector of A, where k is any scalar different than 

zero. An invertable square matrix has n eigenvectors where n is matrix dimension (i.e. number of 

rows or columns): 

 

 niiii ,...,1,  vAv  . (4.0. 

 

 

 

 

Positive definitenes: 

 

Matrix A is positive-definite, if 

 

 00  uAuuT . (4.0. 

 

Matrix is positive-semidefinite, if  

 

 00  uAuuT , (4.0. 

 

negative-definite, if 

 

 00  uAuuT , (4.0. 

 

negative-semidefinite if the relationship includes allows the equality sign, and indefinite 

otherwise. 

 

Matrix is positive-definite, if and only if all its eigenvalues are greater than zero (which can 

be seen if the matrix components are written in its eigensystem, i.e. a cooordinate system the basis 

of which form matrix eigenvectors. 

 

If a square matrix A is invertable (i.e. has a full rank), then matrices TAA , AAT  and 2A  

are all positive definite. 

 

Let’s denote such matrix B. The relation (4.0 can be verified if we write vector u as a linear 

combination of eigenvectors of A. 
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4.1.2 General (asymmetric) matrices 

 

 

 

 

4.1.3 Symmetric Real Matrices 

 

For symmetric matrices, 

 

 TAA   (4.0. 

 

We can perform the LDLT decomposition of such a matrix to a product of a lower triangular 

matrix L, diagonal matrix D and transpose of L: 

 

 

 TLDLA   (4.0. 

 

 

where L is a general lower triangular matrix with unit diagonal elements, 
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- LDL
T
 decomposition is possible only for symmetric matrices. 
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4.2 LDLT Decomposition 
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We can decompose symmetric matrices in the form 
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where L is a lower triangular matrix with unit diagonal elements, 
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4.2.1 LDLT Decomposition Using Lower Triangle 

 

A general formula is then 
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Instead by lines we can also evaluate factors by columns: 
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(note that jiij aa   since A is symmetric). 
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Figure 4.1: Evaluation of elements of D and L (i.e. the lower triangle) of the LDLT 

decomposition from lower triangle of the original matrix according to equation (4.0. 
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Figure 4.2: Evaluation of elements of D and L (i.e. the lower triangle) of the LDLT 

decomposition from lower triangle of the original matrix according to equation (4.0. 
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4.2.2 LDLT Decomposition Using Only Upper Triangle: 

 

Equations can be obtained from (4.0 and (4.0 taking into account relations jiij aa   and 
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the decomposition. Formulas are then (derived from (4.0: 
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Evaluation order for terms in both equations is shown graphically in Figure 4.4 and Figure 6.1. 
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Figure 4.3: Evaluation of elements of D and TL  (i.e. the upper triangle) of the LDLT 

decomposition from upper triangle of the original matrix according to equation (4.0). 
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Figure 4.4: Evaluation of elements of D and TL  (i.e. the upper triangle) of the LDLT 

decomposition from upper triangle of the original matrix according to equation (4.0). 
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5 CHOLESKY DECOMPOSITION 

 

This decomposition is of form 

 

 TLLA  , (5.0. 

 

where L is a lower triangular matrix 
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Note that diagonal elements of L are in general different than 1, unlike in the LDL
T
 decomposition. 

A must be a symmetric positive definite matrix. 
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General formula: 
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In this case we evaluate elements of L by rows, i.e. in the following order (for a 55  matrix): 
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Instead of by rows, we can also evaluate factors by columns: 
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 (5.46) 

 

Evaluation order is then the following for a 55  matrix): 
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Outline of an algorithm for computing the LL
T
 factors: 

 

 

A nice property of the algorithm is that we don’t neeed to store the original matrix throuout 

the algorithm When a specific element of L is computed, it can immedially replace the 

corresponding element of A since this is not needed any more. The algorithm assumes that diagonal 
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and below diagonal elements of A are stored in the input matrix, while elements beyond diagonal 

do not need to be stored because A is symmetric. 

 

 

6 GRAM-SCHMIDT (GS) ORTHOGONALIZATION 

 

In this Section, a procedure of obtaining a set of mutually orthogonal (or orthonormal) 

vectors from an arbitrary set of linearly independent vectors by the process called Gram-Schmidt 

orthogonalization is described. This process can be used for orthogonal decomposition of a matrix, 

which includes the known QR factorization described in Section 6.2, where a matrix is factorized as 

a product of an orthogonal and upper triangular matrix. This can be used for calculating eigenvalues 

and eigenvectors of the matrix (by application of an iterative procedure known as the QR iteration) 

or for solution of systems of equations, which is a method of choice when the system matrix is ill 

conditioned. 

 

After the QR factorization, a non-standard form of factorization (67) is described in Section 

6.3, where one obtains an orthogonal matrix (whose columns are orthogonalized columns of the 

original matrix) expressed as a product of the original and upper triangular matrix. The factorization 

will not be used in practice for solution of equations (although this is possible, as described in 

Section 6.3.2), but is described for instructive purposes. The reader can skip this section without 

harm. 

 

We have vectors 1v , 2v , …, mv , where nm   (n is the dimension of the vector space). We 

want to construct m mutually orthogonal vectors iq  which are obtained from the original set of 

vectors, i.e. are linear combinations of vectors iv . 

 

6.1.1 Basic Idea 

 

Let us have vectors 1q  and 2v . We want to construct a vector 2q  which will be a linear 

combination of these two vectors and will be orthogonal to the vector 1q . The most obvious way is 

to subtract from 2v  its orthogonal projection on 1q   (see Figure 6.1). This projection has direction 

of 1q  and size 
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cos,
222121 vqvq  . 

 

The projection is then 
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and the constructed orthogonal vector 2q  is 
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It can be easily shown that this vector is orthogonal to 1q : dot product of the above equation with 

1q  yields 
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Figure 6.1: Construction of the next orthogonal vector. 

 

The construction described above can be easily extended for a set of n vectors. We set 

 

 11 vq   (6.0. 

 

and the subsequent orthogonal vectors are formed as 
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We can see by total induction that each jq  generated in this way is a linear combination of vectors 

jkk ,v  and that it is orthogonal to all jkk ,q . At the end of the procedure we therefore obtain a 

set of m mutually orthogonal vectors iq , which are all linear combinations of original vectors and 

are non-zero if the original vectors are linearly independent. 

6.2 Modified Gram-Schmidt Orthogonalization and QR 

Factorization 

 

The Gram-Schmidt orthogonalization procedure described by (6.0 is numerically less stable 

because the generated vectors tend to loose their linear independency because of the numerical 

errors. A modified procedure is therefore used in practice, which is quite similar to the original one, 

but the order is a bit different. 

 

We will use a bit different notation and will denote the original vectors by , 1, ...,i i na . We 

want to obtain an orthonormal basis of vectors 1q  from 1a  such that 
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The original procedure is performed by the following steps: 
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In the first part of each step, an new vector is produced from subtracting form the original 

vector all orthogonal projections of this vector to already computed orthogonal and normal vectors. 

In this way a vector is produced that is normal to all previously calculated vector, and in the second 

step this vector is normalized with respect to the Euclidean norm. If vectors were not normalized, 

then we should perform division by ,i iq q  in order to obtain the correct projection.  

 

The modified Gram-Schmidt procedure is performed in such a way that projections are 

gradually subtracted from the original vector and such reduced vectors are projected on already 

obtained ortonormal vectors: 
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Vectors obtained by this process are the same since, taking into account orthonormality of 

vectors iq , we have 
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We can use the Gram-Schmidt procedure for computing the QR factorization of a matrix. 

Matrix m nA  ( m n ) admits a QR decomposition if there exist an orthogonal matrix (columns 

orthogonal and normalized) m mQ  and an upper trapezoidal matrix m nR , such that 

A QR . 

 

Reduced QR factorization: 

If m nA  is of rank n (i.e. ahs full rank) for which a QR factorization is known, then there 

exists a unique factorization of A of the form 

 

 m n m n n n  A Q R  (48) 

 

where Q  is orthogonal and R  upper triangular, and these are submatrices of Q and R (left upper 

corner). Q  has orthonormal vectors of columns and coincides with the Cholesky factor H of the 

symmetric positive definite matrix TA A , i.e. 

 

 T TA A R R  . (49) 

 

This matrix is positive definite because every matrix of the form TA A  is positive 

semidefinite, and if Ahas full rank then it is positive definite. 
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If A has full rank n then the column vectors of A form an orthonormal basis for the vector 

space  range A . The QR factrorization is therefore a procedure of generating an orthonormal basis 

for a given set of vectors. If A has rank r<n, then the QR factorization does not necessarily yield an 

orthonormal basis for  range A . However, it is possible to obtain a factorization of the form 

 

 
11 12T  

  
 

R R
Q AP

0 0
 ,  

 

where Q is orthogonal, P is a permutation matrix and R11 is a nonsingular upper triangular matrix of 

order r. 

 

 

     
upper

m n m n n n  
A Q R  

 

Figure 6: The reduced QR factorization. 

 

If the QR decomposition is performed by the modified Gram-Schmidt procedure, then the 

columns of A are vectors ai and columns of Q are vectors qi of the equation (47). Matrix R is 

obtained by left multiplication of A by T
Q  (from equation n(48), since Q is orthogonal): 

 

 TR Q A . (50) 

 

 

6.2.1.1 Case m=n  

 

 
     

upper

n n n n n n  
A Q R  (51) 

 

If A is non-singular and R has positive diagonal elements (by agreement), then the 

factorization (51) is unique. 

 

 

6.2.2 Remark: Extended QR decomposition 

In fact, some QR algorithms produce the expanded trapezoid matrix  m n
R . In this way we have  

 

    m n m m m n  
A Q R  , (52) 

 

where R is upper trapezoidal, 
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;

0;

i j

ij

r i n
r

i n


 


 , (53) 

 

and A is upper triangular, i.e. 0;ija i j  . The orthogonal matrix Q is orthogonal in the whole 

space n n , therefore its orthonormal basis could not obtain only from columns of A, but was 

expanded. We will therefore call the procedure expandeded QR decomposition with Gram-

Schmidt orthogonalization. 

While R is simply supplemented by zeros below the m-th row, there are different 

possibilities of how to expand Q. The most obvious possibility is to successively take trial vectors 

of some basis of n , orthogonalize them with respect to already calculated columns of Q, and if 

linear dependence on already obtained orthonormal vectors occurs then reject the current trial 

vector and skip to the next one (since at least m-k vectors of the basis will be linearly independent 

on all k vectors that are already there). Orthonormal basis vectors  0, ...,1, 0, ...i e  can be most 

conveniently taken
1
. 

For a measure of linear dependency, we can simply take the norm of what remains after 

subtraction of projections on already calculated qk.
2
. Some lower bound must be set on this norm, 

e.g. 0.1. The norm must be such that there for sure exists such basis vector that after subtraction of 

all projections on any set of lower dimensional basis vectors, the norm of the remaining vector is 

greater than this lower bound. Besides, the norm should not be too small because this would 

increase numerical errors (because we would allow acceptance of vectors that are almost linearly 

dependent on the currently available basis vectors). 

 

If we would also need to extend A with additional columns such that it would have a full 

rank in n , then we can proceed as follows: We first extend Q as described above. Then we extend 

R to the dimension m m  by diagonal elements taking the value 1 (or maybe an average absolute 

value of already calculated diagonal elements obtained by the reduced QR factoritzation, in order to 

improve scaling) and out of diagonal elements taking the value 0. Then we calculate the extended A 

by simply calculating the product QR  by extended matrices. The extended A would in this way 

have the full rank m if the original A had full rank n (because both Q and R would have a full rank). 

Besides, the first n columns of A would be the same as with the original because of the zeros in R 

below the upper-left n n  block.  

 

6.2.3 Solution of Systems of Equations with QR decomposition 

 

We are solving the system 

 

                                                 
1
 In special cases when there is a reason to suspect that columns of A are close to the first m of these vectors, we can 

reverse the order in which these vectors are taken, in order to minimize the possibility of rejecting vectors. 
2
 In fact, the ratio between this norm and norm of ei should be taken, but norm of ei is 1. 
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     1 1m n n m  

A x b  (54) 

 

 

We assume we have factored matrix A as a product of an orthogonal matrix Q and an upper 

trapezoid matrix R:  

 

 
     m n m m m n  

A Q R  (55) 

 

where Q has a full rank m, and 

 

 0iji j r    . (56) 

 

 

 

If the m>n then the system 

 

 
     1 1m n n m  

A x b  (57) 

 

is overdetermined (i.e. there are moer equations ) and can therefore be solved in the least square 

sense.  

 

6.2.3.1 Case m=n  

 

We first limit ourselves on the case m=n, i.e. the number of equations is the same as the 

number of variables. We solve the system by first setting (since 1 T Q Q ) 

 

 Ty Q b  . (58) 

 

and then solving the system 

 

 Rx y  (59) 

 

Equation (59) is a system with an upper triangular matrix whose solution is described in 

Section 8.4.1. 

 

6.2.3.2 Case m>n  

In this case we have an overdetermined system with more equations than unknowns. 

Solution of such systems is described in Section 7. 
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6.3 Non-standard factorization by using the GS 

 

In this chapter a non-standard form of a factorization obtained derived from the Gramm-

Schmidt orthogonalization is used. A standard form of factorization known as QR decomposition is 

described in Section 6.2. The Section 6.1.1 explains the idea of Gram-Schmidt orthogonalization 

that is used for derivation of both forms, while the procedure described in this Section is specific for 

non-standard form. 

 

In standard form, we perform the QR factorization in such a way that the original matrix is a 

product of an orthogonal and upper triangular matrix produced by the factorization. The orthogonal 

matrix is calculated first ant the upper triangular matrix is obtained by left multiplying the original 

matrix by its transpose (since the inverse of the orthogonal matrix equals its transpose). 

 

In the non-standard factorization described here, we express theorthogonal matrix that is 

obtained from the original one, as a product of the original and upper triangular matrix. Again, 

columns of the orthogonal matrix are orthogonalized vectors obtained from columns of the original 

matrix. The orthogonal matrix is obtained by a similar Gram-Schmidt process as in QR 

decomposition, while the upper triangular matrix is obtained simultaneously with the orthogonal 

matrix by performing equivalent operations as on the orthogonal matrix, on the matrix that is first 

set to identity matrix (and these operations transform it to the upper triangular form such that its left 

product with the original matrix equals the orthogonal matrix). The method will not be often used in 

practice, but it is described here because it is instructive. 

 

After the Gram-Schmidt orthogonalization, each orthogonal vectors jq  is a linear 

combination of the original vectors. We can therefore write  

 

 
     m n m n n n  

Q V A  , ,(6.60) 

 

where A is a matrix of coefficients of these linear combinations
1
, V is the matrix whose columns are 

the original vectors iv  and Q is the matrix whose columns are orthogonal vectors jq . The above 

equation can be written by columns, which gives orthogonal vectors expressed as linear 

combination of the original ones: 

 

Remark: the following derivation should be checked. The final procedure is correct, 

however, because the functions described in Section 6.3.3 were all verified. 

 

 
1

, 1,2,...,
n

j kj k

k

a j m


 q v . (6.0. 

 

                                                 
1
 Beware of different notation with respect to the usual notation. Here V denotes the original matrix and A denotes an 

upper triangular matrix, while in most commonly, A is used for the original matrix and R is used for the upper 

triangular matrix. 
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This comes from 
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It is seen from (6.0 and (6.0 that matrix A is upper triangular with unit diagonal elements: 
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Evaluation of orthogonal vectors jq  can be accompanied by simultaneous evaluation of 

coefficients of A. The complete procedure is then the following: 

 

:1j  

 

set 

 

 11 vq   (6.0. 

 

and 
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Equation (6.0 follows from (6.0 and (6.0, which give 
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where (6.0 was taken into account twice. Equating terms at kv  gives (6. 0, where it is taken into 

account that 0kla  for kl  . 

 

In the algorithm the coefficient l

ll

lj
q

qq

qv






,

,
 should be evaluated only once for each  lj, , 

therefore individual contributions to all kja  in (6.0 are evaluated when specific coefficient is 

available. The algorithm step ((6.0, (6.0) is therefore actually the following: 

 

:1j  

 

set 

 

 11 vq   (6.0. 

 

and 

 

 mkaa k ...,,3,2,0,1 111   (6.0. 

 

 

for mj ...,3,2 : 

 

set 

 

 1...,,2,1,0,1  jkaa kjjj  (6.0. 

 

and 

 

 jj vq  , (6.0. 
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and 
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6.3.1 Orthogonalization with normalization 

 

This operation generates vectors which are mutually orthogonal and whose Euclidian norm 

equals 1. The procedure is practically equivalent except for the normalization factor that is applied 

at the end of calculation of each column of Q. The procedure follows those described in (6.0 to (6.0, 

except that orthogonal vectors are normalised immediately after they are constructed and because of 

that some of the coefficient in the above equations become 1. Orthogonalisation with normalisation 

is approximately as fast as without normalisation, but is more convenient for solution of systems of 

equations. Matrix A does not have units in diagonal any more:  
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The procedure is the following: 
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and 

 

 mkaa k ...,,3,2,0,1 111   (6.0. 

 

 

for mj ...,3,2 : 

 

set 

 

 1...,,2,1,0,1  jkaa kjjj  (6.0. 
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and 

 

 jj vq  . (6.0. 

 

for 1...,3,2  jl  

 

set 

 

 lljjj qqvqq  , , (6.0. 

 

 and 

 

 lkaaa klljkjkj ...,,2,1,,  qv . (6.0. 
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set 
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set 
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6.3.2 Solution of Systems of Equations with Gram-Schmidt 

Orthogonalisation (non-standard form) 

 

In Gram-Schmidt Orthogonalisation we construct from matrix of original vectors (columns) 

V an orthogonal matrix Q and upper trapezoid matrix of coefficients A so that 

 

       ;
n n n m m m

m n
  

 Q V A . (6.0. 

 

 

For solution of system of equations only square matrices will be considered here, i.e. m=n. 
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We can solve the system 

 

 bVx   (6.0. 

 

by introducing a new variable xAy
1 . The above system then falls to one orthogonal system and 

matrix multiplication: 

 

 bQy   (6.0. 

and 

 

 x Ay  . (6.0. 

 

Solution of (6.0 is described in Section 8.2 while (6.0 is just a simple matrix multiplication. 

 

6.3.3 Implementation of GS (non-standard form) 

 

In IOptLib the following functions are used: 

 
void GSortplain(matrix V,matrix Q,matrix A) 

- From original matrix 
 m n

V  ( m n ), a matrix with mutually orthogonal (but not normal) 

columns m nQ  and upper triangular  n n
A  are calculated such that Q V A . All matrices must be 

allocated and of appropriate dimensions. 

 
void GSortnormplain(matrix v,matrix q,matrix a) 

- Similar as GSortplain, only that Q is orthogonal (i.e. columns are not only mutually 

orthogonal but also normalized). 

 
void GSort0(matrix V,matrix *Q,matrix *A) 

and 
int GSortnorm0(matrix v,matrix *q,matrix *a) 

are comfortable forms of GSortplain and GSortnormplain. Matrices of results are allocated 

or reallocated with the appropriate dimensions if necessary. 

 
vector solvGS0(matrix M,vector b,vector *x) 

Solves a system of equations Mx b  in such a way that the Gram-Schmidt 

orthogonalization is first performed by GSortnormplain and then the system is solved 

according to (0 and (0. The intermediate storage necessary for operations is allocated and then 

released within the function. Because of this, function is not efficient and should not be used for 

important computations. 
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The systems can instead be solved by three calls – first to orthogonalization 

(GSortnormplain0(M,&Q,&A)) and then by solvortnorm0(Q,b,&x) to solve the 

orthogonal system (0 followed by matprodvec0(A,x,&x) to perform matrix multiplication  (0. 

Solution of the orthogonal system can also be performed by mattranspprodvec(Q,b,&x). 

 
matrix solvmatGS0(matrix M,matrix B,matrix *X) 

- This function is similar to solvGS0, but it solves several systems of equations at once, 

where B contains right-hand sides as its columns and solutions are stored in columns of X. 

 

7 OVERDETERMINED SYSTEMS 

 

In this Section we describe solution of over determined systems of equations where we 

have more equations than unknowns: 

 

 
     1 1

,
m n n m

m n
  

 A x b  . (61) 

 

We assume that rank of A is n. In general this means than we can not simultaneously satisfy all the 

equations. We therefore search for the solution in a least squares sense, i.e. we are searching for 

such x0 for which the sum of squares of differences between left-hand and right-hand sides is 

minimal: 

 

 
2

0 2
arg min

n

x


 
x

x A b  . (62) 

 

The function to be minimized is expressed component wise as 

 

  
2

2

2
1 1

m n

ij j i

i j

x a x b
 

 
   

 
 A b  .  

 

A unique solution x0 exists (under assumption rank nA ). This is exactly the solution of 

equation 

 

 T TA Ax A b  , (63) 

 

which is obtained by left multiplying the equation by T
A . This system is called the normal system 

of equations. 

 

We can verify that the solution of (63) is also the solution of (62). We write  

 

 ,T T B A A c A b . (64) 
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Then we have 

 

    
2 1 1

2
,

T T Tx          A b Ax b Ab b Bx c B Bx c c B c b b  . 

 

Matrix B is positive definite: 
2

2
, 0T T T   x x Bx x A Ax Ax . This is 0 only when Ax 0 , 

which is possible only when x 0  because matrix A has a full rank n. 

If B is positive definite then also 1B  is positive definite. The smallest value of the quadratic 

form therefore equals 0 and this is when equation (63) holds, while other terms are independent of x 

and represent the sum of squares of differences in the solution. Because T A A B  is not singular, 

the solution is uniquely defined. 

 

System (63) can be calculated by the Cholesky decomposition of B,  

 

 T T A A B V V   (65) 

 

where V is upper triangular, which is followed by solution the lower triangular system 

 

  T T V y c A b   (66) 

 

and the upper triangular system 

 

 0 V x y  . (67) 

 

 

The described classical way is not recommendable because sensitivity of the system can be 

strongly increased at explicit calculation ob B (i.e. the matrix can become very ill conditioned). Let 

us suppose that eigenvalues of B arranged in decreasing order are 2

i . Spectral sensitivity of A is 

then 1

n




, while spectral sensitivity of B is 
2

1

n




 
 
 

. More recommendable is solution through 

orthogonal transformations. 

 

7.1 Orthogonal methods 

 

The basis of the orthogonal methods is the QR factorization of the matrix A, to a product of 

an orthogonal matrix Q and upper trapezoid matrix U: 

 

      m n m m m n  
A Q U  , (68) 
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where 

 

 
0

T

m

iji j u



  

Q Q I
 (69) 

 

We calculate the solution of the orthogonal system 

 

 Tz Q b  , (70) 

 

and we write U and z in block form, 

 

 
 

  

,
n n n

m nm n n



 

   
    
    

V y
U z

0 w
 . (71) 

 

Taking into account the decomposition (68) and block form (71), we have 

 

    
TT T T   B A A QU QU U U V V  . (72) 

 

This means that upper triangular matrix V is the Cholesky factor of the normal matrix TA A . This 

means that with the orthogonal methods, calculation of the normal matrix TA A  and its factorization 

is avoided. Matrices B in (71) and (65) are the same if we take care in the orthogonal decomposition 

that all diagonal elements of V are positive. 

 

We can further calculate 

 

  
TT T T T T    c A b QU b U Q b U z V y  . (73) 

 

This means that y, which is the upper part of the transformed vector z, solution of the lower 

triangular system (66). 

 

The least squares solution is obtained by solution of the upper triangular system 

 

 0 V x y  . (74) 

 

Vector w, which is the lower part of z, also has its meaning – square of its Euclidean norm is 

the sum of squares of differences: 

 

 
2 2

2 2
x A b w . (75) 

 

This is derived as follows: 



 

 

8. Special Systems of Equations   Matrix Decompositions With Implementation Remarks 
 

 

 

 

44 
 

 

 

 
2 2 2 2 2 2

0 0 02 2 2 2 2 2
x        A b QUx Qz Ux z Vx y w w  .  

 

Remark on QR decomposition: 

The QR decomposition is often calculated in the reduced form, such that 

 

 
     m n m n n n  

A Q U  , (76) 

 

In this case Q must be supplemented by orthogonal columns up to full rank m.  

 

 

8 SPECIAL SYSTEMS OF EQUATIONS 

 

8.1 Orthogonal systems 

By the term orthogonal system, we will refer to a systems with orthogonal matrix, i.e. a 

matrix with orthonormal columns (and consequently rows). A more general class of systems with 

matrices whose columns are mutually orthogonal but not normalized is described in Section 8.2. 

 

For orthogonal real matrices
1
 the following equation is valid: 

 

 1;T T T  QQ Q Q I Q Q  . (77) 

 

Therefore, the system of equations with an orthogonal matrix 

 

 Qx b  (78) 

 

is solved simply by multiplying the vector of right hand sides by the transpose of the system matrix: 

 

 Tx Q b  (79) 

 

                                                 
1
 Equivalent for matrices defined over complex field is unitary. 
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8.2 Systems with Matrices that have Orthogonal Columns 

 

Let’s have a system 

 

 Qx b , (8.0. 

 

where Q is orthogonal, i.e. such that its columns are mutually orthogonal (dot product zero). The 

above system can be written in the form 

 

 nnxxx QQQb  ...2211 , (8.0. 

 

where iQ  denotes the i-th column of Q and ix  denotes the i-th component of vector x. If the 

equation is dot-multiplied by iQ , we obtain 

 

  iiii x QQQb ,, , (8.0. 

 

which follows from orthogonality of jQ  and iQ  for each ij  . It follows that 

 

 





ii

i
ix

QQ

Qb,
. (8.0. 

 

If columns of Q are also normed in the Euclidian norm, then we simply have 

 

  ii Qbx , , (8.0. 

which simplifies to 

 

 Tx Q b . (80) 

 

If columns of Q are orthonormal then Q is an orthogonal matrix for which 1 T Q Q . 

 

8.2.1 Inverse of a Matrix with Orthogonal Columns 

 

We search for an unknown matrix X such that 

 

 IQX . (8.0. 
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For the i-th column of X we have 

 

 ii eQX  , (8.0. 

 

where ie  is the i-th unit vector (i.e. component i is 1 and all others are 0). It follows from (8.0 that 

 

  








jj

ij

jj

ji

jijix
QQ

q

QQ

Qe
X

,,

,
 (8.0. 

 

or finally 

 

  




ii

ji

ij
QQ

q
Q

,

1  (8.0. 

 

If clolumns of Q are also normalised with respect to the Euclidian norm, then we have simply 

 

   jiij qQ 1 . (8.81) 

 

 

 

 

8.2.2 Component-wise verification 

 

We verify some of the equations from Section 8.2 in component-wise notation. Let’s have a 

system 

 

 

 

 bAx  . (8.82) 

 

 

 

 

   

11 1 12 2 1 111 12

21 1 22 2 2 21 22 2

1 21

1 21 1 2 2

1 1 2 2

...

...
...

... ....... ...

...

...

n n n

n n n

nm n n

m mm m mn n mn

n n

a x a x a x aa a

a x a x a x a a a
x x x

a aa x a x a x a

x x x

 

        
      

  
          
      
      

         

  

A x

a a a

 (8.83) 
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With ia  we denote the i-th column of A. 

 

For product of two matrices it holds 

 

 
 

1

2

...

k k j

k k j

n p jm n
j

mk k j

a x

a x

a x



 
 
    
  
 
  

A X Ax , (8.84) 

 

i.e. the j-th column of the product equals product of the left matrix with the j-th column of 

the right matrix. In the above equation, the Einstein summation rule was applied, i.e. we have 

summation over indices that are doubled. 

 

Let’s have a matrix Q whose columns are mutually orthogonal: 

 

 



n

k

iijkjkiji qq
1

2
qqq  , (8.85) 

 

where 













ji

ji
ij

;0

;1
 . 

 

Product DQQ T  is a diagonal matrix because 

 

   2
, iijjiij

T
qqqQQ  , (8.86) 

 

where iq  is the i-th column vector of matrix Q. 

 

 

A special case are orthogonal matrices which in addition to (8.0 have normed columns, 

such that  

 

 ijji  qq ,  (8.87) 

 

For such a matrix the following is true: 

 

 IQQQQ  TT
. (8.88) 
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8.3 Systems of Equations with Matrix with Orthogonal Columns 

 

Let’s have a system 

 

 bQx , (8.89) 

 

where Q is orthogonal matrix. It follows that 

 

 



n

k

kknn xxxx
1

2211 ... qqqqb , (8.90) 

 

where qI is the i-th column of Q. After multiplication of the above equation with 
T

iq  from left we 

obtain 

 

  iiii x qqqb ,,  (8.91) 

 

and so 

 

 
2

,

i

i
ix

q

qb 
 . (8.92) 

 

Solution of the system can is obtained very simply. This can be used for formulae for inverse of an 

orthogonal matrix: 

 

   iii eQxQxIQX  , , (8.93) 

 

using (8.0 we have 

 

  
22

,

j

ij

j

ji

jiji

q
x

qq

qe
x 


  (8.94) 

 

or 

 

  



 
n

k

kiki

ji

i

ji

ij

qq

qq

1

2

1

q
Q . (8.95) 
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If columns of Q are also normed with respect to the Euclidian norm, then the denominator 

of the above equation equals 1. 

 

8.4 Triangular Systems 

 

8.4.1 Upper Triangular Systems 

 

We solve the system 

 

 bAx  , (8.96) 

 

where A is upper triangular, i.e. elements below diagonal are zero, see (3.0. The system looks like 

this: 

 

 

























































nnnn

n

n

b

b

b

x

x

x

a

aa

aaa

......

000

............

...0

...

2

1

2

1

222

11211

bxA

 (8.97) 

 

The above equations written in reversed order are: 

 

 

11111111

22112222

11111

...

...............

bxaxaxa

bxaxaxa

bxaxa

bxa

nnnn

nnnnnnnnnn

nnnnnnn

nnnn















 (8.98) 

 

The solution is evaluated backwards: 

 

 
nn

n
n

a

b
x  , (8.99) 
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 1...,,2,1,/
1









 



nniaxabx ii

n

ik

kikii  (8.100) 

 

8.4.2 Lower Triangular Systems 

 

We solve the system 

 

 bAx  , (8.101) 

 

where A is lower triangular, i.e. elements below diagonal are zero, see (3.0. The system looks like 

this: 

 

 

11 1 1

21 22 2 2

1 2

0 ... 0

... ...

... ... ... 0 ... ...

...n n nn n n

a x b

a a x b

a a a x b

     
     


     
     
     
     

A x b

 (8.102) 

 

 

The solution is evaluated forwards: 

 

 
11

1
1

a

b
x  , (8.103) 

 

 niaxabx ii

i

k

kikii ...,,3,2,/
1

1









 





 (8.104) 
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9 NUMBER OF OPERATINOS FOR STANDARD MATRIX 

OPERATIONS 

 

9.1 Basic Operations 

 

9.1.1 Matrix and vector multiplications: 

 

Matrix multiplications: 

 

m n m p p n  C A B : 2N mn p  (vsak element približno p množenj in p seštevanj) 

 

n n n n n n  C A B : 32N n  

 

Matrix times vector: 

 

1 1m m n n  c A b : 2N mn  (vsak element približno n množenj in n seštevanj) 

 

1 1n n n n  c A b : 22N n  (vsak element približno n množenj in n seštevanj) 

 

Scalar product: 

 

1

T

n nc  a b : 2N n  (n množenj in n seštevanj) 

 

 

 

9.2 Special systems of equations 

 

9.2.1.1 Lower triangular system 
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1 1 , 0, 1n n n n ij iii j l l      L y b : 21 1

2 2
N n n   

 

this follows from  
1

2

1

1 1

2 2

n

r

N n r n n




     

 

9.2.1.2 Upper triangular system 

 

1 1 , 0n n n n iji j u     U y b : 21 1

2 2
N n n   

 

this follows from   2

1

1 1
1

2 2

n

i

N n i n n


      ; The difference with respect to lower 

triangular system is that diagonal elements are different than 1, which adds n divisions. 

 

The total number of operations requires 21 1

2 2
n n  multiplications or divisions and 

21 1

2 2
n n  summations or subtractions. This is four times as much multiplications as Gaussian 

elimination and twice as much summations, beside the  1 / 2n n  square roots. 

 

 

9.2.1.3 Orthogonal system 

 

1 1 , T

n n n n   Q y b Q Q I  : 23 3N n n  , 

 

i.e. 22 2n n  multiplications and 2n n  summations 

 

 

 

9.3 Factorizations 

 

9.3.1.1 LU factorization 
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n n n n n n  A L U : 31 1

3 3
N n n   

 

Solution of equations Ax b : 3 21 1

3 3
N n n n    

(factorization + lower triangular + upper triangular system) 

 

Solution of m systems of equations: 3 21 1

3 3
N n mn n    

 

Determinant of a matrix det n nA : 31 2
1

3 3
n n   

(factorization + n multiplications of diagonal terms of U) 

 

Inverse matrix: 3n  operations  

(by solution of AX I , solution with the s-th unit vector on the right is the s-th column of 

X) Decomposition: 31 1

3 3
N n n   operations, lower triangular with ei as right hand sides (less 

operations): 3 21 1 1

6 2 3
n n n   upper triangular: 

2 2

2 2
n n , toal: 3n  

 

 

9.3.1.2 QR Factorization 

9.3.1.2.1 Reduced factorization with the modified Gram-Schmidt method: 

 

; , 0T

m n m n n n iji j r      A Q R Q Q I :  22N mn  . 

 

Solution of a system of equations: 
22N mn  for factorization, 23 3m m  for solution of the orthogonal system, and 2n  

operations for upper triangular system, together. 

 

 

9.3.1.2.2 QR factorization with Givens method 

 

; , 0T

n n n n n n iji j r      A Q R Q Q I  : 2 3 3 21 1 4 4 2 1 1

2 2 3 3 3 2 6
N n n n n n n n

   
         
   

 

32 2N n n   
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21 1

2 2
n n  square roots, 34 4

3 3
n n  divisions or multiplications and  3 22 1 1

3 2 6
n n n   

summations 

 

 

Solution of a system of equations: 
32 2N n n   for factorization, 23 3n n  for solution of the orthogonal system, and 2n  

operations for upper triangular system, together 2 22 5n n n   operations. 

 

 

9.3.1.2.3 QR factorization with the Housholder method 

 

; , 0T

n n n n n n iji j r      A Q R Q Q I  :      3 2 3 22 2
1

3 3
N n n O n n O n

   
        

   
 - twice 

less multiplications as the Givens method and twice as much as Gauss elimination. Total number of 

operations is for 1/3 less than at Givens method and twice greater than with Gauss elimination. 

 

1n  square roots,  3 22

3
n O n  divisions or multiplications and  3 22

3
n O n  summations. 

 

Solution of a system of equations: 

 3 24

3
n O n  for factorization, 23 3n n  for solution of the orthogonal system, and 2n  

operations for upper triangular system. 

 

 

9.3.1.3 LDMT factorization 

 

; 0 0, 0T

n n n n n n n n ij ij iji j l m i j d           A L D M : 31

3
N n  

 

9.3.1.4 LDLT factorization 

 

; 0, 0n n n n n n n n ij iji j l i j d         A L D L : 31

3
N n  

 

9.3.1.5 Cholesky factorization 
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 3 21

6
N n O n   
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