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ABSTRACT 
The current work outlines application of a framework 

based on artificial neural networks and an integrated 

optimization module to adjustment of process parameters 

in steel production. The framework was originally 

developed for adjustment of parameters of material 

production processes in order to obtain the desired 

outcomes, and was primarily intended for use in the 

production of carbon nanomaterials in arc discharge 

reactors. Further development lead to more generalized 

procedures, applicable to a broad spectra of material 

production and processing. An example of optimizing the 

process parameters in continuous casting of steel on basis 

of expert knowledge and by the developed system is 

presented. Further steps are made towards modeling of the 

whole process chain in the steel plant, rather than just the 

casting process. Such models are in the development 

stage, and some preliminary results are shown where the 

model is used for performing some parametric studies. 
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1. Introduction 

Continuous casting (process described in Section 3) 

enables large scale production of steel [14]. For efficient 

production, the process must run smoothly and without 

defects produced in the output material, which is 

controlled by the main process parameters such as 

temperature of the molten steel, casting speed, cooling in 

the mold, and spray cooling at different stages. Quality of 

the produced material must meet requirements prescribed 

by customers. Obtained material properties are result of 

both process parameters and chemical composition that is 

achieved when the steel is melted, and in turn chemical 

composition affects properties of the melt and solidified 

shell, as well as the solidifying process. A fair number of 

parameters must be properly adjusted in order to have 

efficient production of material with required properties. 

A software framework has been developed for adjusting 

process parameters in material production in order to 

obtain the desired outcomes [22]. The framework was 

initially intended for use in production of carbon 

nanomaterials in the arc discharge reactors, and has later 

been applied to continuous casting of steel. The 

framework functionality has been extended in order to 

provide support to different aspects of process design. In 

the present work, three example applications are shown. 

The framework is first applied to achieve desired 

outcomes in the continuous casting process. Further, it is 

applied to optimize process parameters in conjunction 

with numerical model of the process and engineering 

knowledge about the process. Finally, the framework was 

applied in order to predict outcomes of the whole chain of 

processes in a steel plant. 

 

2. Software framework for neural 

networks modeling and optimization 

The optimization part of the framework is designed as a 

stand-alone optimization system. Its development was 

centered around a library of optimization techniques for 

industrial problems where optimization is carried out on 

basis of computationally expensive numerical simulations 

whose results contain substantial level of numerical noise 

[1], [2]. This has been predominantly treated by 

algorithms based on adaptive approximation of the 

response functions. Successive approximations of 

sampled response over suitably sized domains enable 

exploitation of higher order function information. 

Restricted step approach is used to ensure global 

convergence, and adaptive sampling strategies play 

significant role in reducing the necessary number of 

evaluations of the response functions evaluated through 

expensive simulations.  

Work was initiated as an attempt to re-implement the C 

library IOptLib [1]-[5] in a rigorous object oriented 

manner in order to more easily master complexity of the 

developed algorithms and to speed up the development 

process. In the future, framework will be extended in 

order to enable a straightforward inclusion and a seamless 

use of the third party optimizers. This requires careful 

design of abstraction levels and standardization of 

input/output and calling conventions, which is achieved 

by suitable wrappers, when third party software is 

incorporated. Further steps will be made towards more 
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unified treatment of different kinds of problems such as 

constrained / unconstrained or single objective / 

multiobjective optimization. Multidisciplinary approach is 

also considered in a way that different simulators may be 

used in different problem fields involved in a single 

definition of an optimization problem. 

In many practical situations, process design parameters 

must be adapted quickly in order to produce results that 

comply with customer requests. With the classical 

approach to optimization of process parameters, long 

computational times needed for each run of the process 

simulation at trial design parameters can therefore limit 

applicability of process optimization in industrial 

environment. Alternative solution is to approximate the 

response of the observed system on basis of sampled 

response prepared in advance either by runs of numerical 

model or by measurements performed on previous designs 

used. Search for optimal design parameters is then 

performed on the surrogate model based on the 

approximated response.  

In the current work, approximation based on neural 

networks has been applied. With this approach, evaluation 

of approximated response approximation is performed in 

two separate stages. In the training stage, the network is 

trained by using the sampled response (either measured or 

calculated by a numerical model). In the approximation 

stage, trained network is used for calculation of 

approximated response at arbitrary values of input 

parameters. 
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Figure 1: Two stages of application of the ANN-based 

system: a) building the approximation model by training 

the network on existent data, and b) evaluation of the 

approximate response by the trained neural network. 

 

At the beginning, we have considered use of a 

commercial neural network approximation system for the 

approximation part of the framework. However, this 

turned inflexible and an in-house module was built based 

on general purpose neural network libraries. It features 

modular design such that new underlying libraries can be 

easily utilized (open source libraries Aforge.Net [10] and 

NeuronDotNet [11] are currently used). This also 

provides good flexibility in integration with other 

software, designing training strategies, filtering training 

data, verification of results, testing different network 

layouts, etc. This is crucial when approximating behavior 

of material processing systems with a large number of 

process parameters. Data obtained from such systems is 

often inaccurate or even corrupted due to practical 

limitations in acquisition procedures. Response sampling 

can not be planned in advance but it is accommodated to 

production schedules in the factory, therefore information 

available may be deficient in some regions of parameter 

space in order to obtain good response approximation and 

therefore verification of results plays an important role. 
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 Figure 2: Evaluation of response functions based on 

approximated response, and integration of this step in 

optimization procedure. 

 

Since the final goal is to optimize process parameters 

according to the design goals, we need to approximate the 

dependence of objective and constraint functions on 

optimization parameters. The described software system 

also supports a different approach where the neural 

network is trained with data that contains all influential 

parameters of the process and a number of rough output 

values sampled in the process. Specific optimization 

problems can then be defined on such approximated 

response by defining mapping between the optimization 

parameters and the input parameters of the neural 

networks, and mapping between the raw approximated 

output values and the higher level response functions 

(constraint and objective functions) of the optimization 

problem as they are defined. In this way we can solve 

differently defined optimization problems by using the 

same trained network, without the need to repeat the 

training procedure when the problem definition changes. 

 

3. Process Description 

The presented framework has been applied to 

optimization of process parameters of continuous casting 

process [12]-[17] in order to obtain the desired quality of 

produced steel billets. The industrial process considered is 
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outlined in [14]. Melted steel is poured into tundish, from 

which it flows to the mold where solidification begins. A 

partially solidified steel billet is transported from the mold 

by a series of supporting rolls. The billet is bent into 

horizontal position and solidifies from the surface towards 

interior, which is controlled  by spray cooling and cooling 

of the rolls. At the end of this stage, the billet is cut and 

prepared for further processes. 

Several requirements must be met in order that the 

process runs smoothly and without defects produced in 

the output material. At mold outlet the solidifying shell 

must be thick enough that the billet is not torn, which 

limits the affordable casting speed. In the region where 

bending occurs, the billet surface temperature must be 

high enough such that banding does not cause cracking of 

solidifying shell. On the other hand, the billet cross 

section must be fully solidified before the cut-off point in 

order to prevent the breakout of the molten steel. 

The described process conditions are predominantly 

controlled by the temperature of the molten steel, casting 

speed, cooling in the mold, and spray cooling at different 

stages. Together with the chemical composition, this 

affects the properties and quality of the produced 

continuously cast billets. 
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Figure 3: Scheme of the continuous casting process [14]. 

 

A calibrated numerical model has been used to calculate 

the process outcomes at any given set of process 

parameters (example is depicted in Figure 4). 
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Figure 4: Numerical simulation results, temperature field 

along billet cross section [14]. 

4. Applications 

4.1 Identification of Optimal Composition and 

Process parameters of Continuous Casting of 

Steel 

Two test cases have been discussed. In the first test case, 

the numerical model was used for generation of test 

training data set for a neural network. A total of 240 

corresponding sets of output values were generated for 

chosen combination of 19 influential parameters. These 

consisted of chemical composition parameters 

(concentrations of alloying elements Cr, Cu, Mn, Mo, Ni, 

Si, V, C, P, S), billet dimension, casting temperature, 

casting superheat, casting speed, temperature difference 

of cooling water in the mould, cooling flow rate in the 

mould, cooling water temperature in sprays, cooling flow 

rate in wreath spray system, and cooling flow rate in first 

spray system. Metallurgical length (see Figure 3), shell 

thickness at the end of the mould and billet surface 

temperature at straightening start position were 

considered on the output side.  

Sampled data has been used to train a two layer artificial 

neural network with sigmoid activation function. It turned 

that sufficient quality of approximation has been 

achieved, which was verified by leaving different random 

combinations of training samples out of the learning 

process, and then checking approximation errors in these 

points. After training, the network state was saved in 

order to serve for approximation of the selected process 

output values dependent on input parameters. An 

optimization procedure has been used on the approximate 

model, with the objective to achieve favorable process 

behavior with respect to the metallurgical length, shell 

thickness and billet surface temperature. Problem that was 

solved is defined in the following way: 

  
 

2
*

1

min
oN

i i

i i

o o
f

l

 
  

 


x

x
x ,  (1) 

where x is a set of optimization parameters, including 

mass concentrations of alloying elements and process 

parameters (see Table 1),  io x  are the observed output 

quantities calculated by numerical simulation of the 

process at given input parameters, oi
*
 are the 

corresponding target values of these quantities, and li are 

their corresponding scaling lengths that are used to 

compensate for different magnitudes of the observed 

quantities and to weight their importance. The scaling 

lengths are typically determined as lengths of intervals of 

acceptable values of the corresponding quantities. If 

necessary, they can be shrunken by a factor proportional 

to relative importance of the corresponding output 

quantities.  

Results are listed in Table 1. It must be mentioned that 

this first example is of an academic nature, since chemical 

composition of steel is usually narrowly prescribed by the 

customer. It is used to demonstrate the ability of the 

applied methodology to deal with larger numbers of 
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process parameters, as well as its potential to identify 

beneficial changes in chemical compositions in certain 

cases. 

A global-local approach has been used where in the first 
stage, a near-optimal set of parameters was found by 
examination of all data points and choosing the point 
with the smallest value of the minimized function as 

initial guess in the second stage (listed in Table 1 as 
starting guess). In the second stage, fine optimization 
was performed by the modified Nelder-Mead 
algorithm[5]. 

 

 

Table 1 

Optimized process parameters. 

Description & units Range in the training set Starting guess Optimal value 

2: Chromium concentration [wt%] 0.1 - 1.15 1.0 1.05 

3: Copper concentration [wt. %] 0.075 - 0.175 0.1 0.125 

4: Manganese concentration [wt. %] 0.375 - 1.725 0.9 0.75 

5: Molybdenum concentration [wt. %] 0.01 - 0.45 0.03 0.025 

6: Nickel concentration [wt. %] 0.075 - 0.2 0.15 0.1 

7: Silicon concentration [wt. %] 0.18 - 0.6 0.3 0.275 

8: Vanadium concentration [wt%] 0.025 - 0.155 0.155 0.025 

9: Carbon concentration [wt. %] 0.07 - 0.61 0.51 0.415 

10: Phosphorus concentration [wt. %] 0.0075 - 0.0225 0.0125 0.015 

11: Sulfur concentration [wt. %] 0.01 - 0.0525 0.035 0.0275 

12: Billet dimension [mm] 140 - 180 180 140 

13: Casting temperature [C] 1515 - 1562 1521 1534 

14: Casting superheat [C] 15 - 59 40 43 

15: Casting speed [m/min] 1.03 - 1.86 1.13 1.74 

16: Temperature difference of cooling 

water in the mould [C] 

5 - 10 7 8.1 

17: Cooling flow rate in the mould 

[l/min] 

1050 - 1446 1308 1134 

18: Cooling water temperature in sprays 

[C] 

18 - 33 26 19 

19: Cooling flow rate in wreath spray 

system [l/min] 

10 - 39 10 18 

20: Cooling flow rate in 1st spray 

system [l/min] 

28 - 75 31 48 

 

Table 2 

Observed output values of the process. 

Description & units Range in the training 

set 

Starting value Target value Optimal value 

0: Metallurgical length [m] 8.6399 - 12.54 11.19 10.31 10.3137 

1: Shell thickness at the 

end of the mould [m] 

0.0058875 - 

0.0210225 

0.0167 0.0124 0.01259 

2: Billet surface 

temperature at 

straightening start position 

[C] 

1064.5 - 1163.5 1114 1121 1120.3296 

 

 

4.2 Optimization of Process Parameters of 

Continuous Casting of Steel 

The second example is oriented towards optimizing the 

process parameters at a fixed chemical composition of 

steel. Optimization criteria and constraints are set in order 

to maximize productivity while at the same time keeping 

amount of defects in the produced billets within the 

acceptable range. The problem was solved for the CrV4 

steel grade with the following chemical composition: 

1,03% Cr, 0.205% Cu, 0.875% Mn, 0.045% Mo, 0.145% 

Ni, 0.3% Si, 0,14% V, 0.515% C, 0.014% P, 0.01% S, 

whereby mass fractions of elements are specified in mass 

percentage. 

Five parameters were considered in optimization: casting 

temperature Tc, casting speed v, difference between inlet 

and outlet temperature of cooling water in the mold T, 

flow rate in the wreath cooling spray system (positioned 
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immediately after the mold) Qw, and flow rate in the first 

spray cooling system Q1: 

 1, , , ,c wT v T Q Q x , (2) 

A set of 10,000 training input/output pairs was generated 

by running numerical simulator with randomly chosen 

parameters within the prescribed parameter ranges. 

Parameter ranges were adjusted according to process 

limitation of the caster. For each parameter set, a set of 

three output quantities was calculated and stored for later 

use in training the ANN model: the metallurgical length 

lm, thickness of the solidified shell at the end of the mold 

ds, and billet surface temperature at the straightening start 

position , Ts. 

The optimization problem has been defined in the 

following way: 

    
2 2

min

:

T s d s sdesired l m m desired

slower s supper

slower s

mlower m mupper

v k T k d d k l l

subject to

d d d

T T

l l l

     

 



 

x

,   (3) 

with the following constants: 

11 ; 14 ; 12

1110

9 ; 11 ; 9

s lower s upper s desired

s lower

m lower m upper mdesired

d mm d mm d mm

T C

l m l m l

  



  

,    (4) 

 

The above problem definition is based on the attempt to 

optimize the production rate of the caster (which is 

proportional to the casting velocity v) and on expert 

knowledge about the ranges of output quantities that 

assure smooth process with no significant defects [12]. 

Shell thickness at the end of the mold is limited below 

because the solidified shell must provide mechanical 

support to the molten steel, but billet surface temperature 

should not be too low because this would cause 

difficulties in bending the billet. Metallurgical length is 

bounded above by the length from the mold to the 

straightening start position, until which the cross section 

of the billet should be completely solidified. It is limited 

below, because if the billet is completely solid much 

before the straightening start position, this would cause 

problems in bending the billet. Due to requirements for 

sufficient formability after casting, it is more desirable 

that the surface temperature is higher at the straightening 

start position. There is a known lower bound above which 

the surface temperature should be kept. 

Optimum was obtained at Tc = 1516 C, v = 1.793 m/min, 

T = 7.35 C, Qw = 21.4 l/min, and Q1 = 43.7 l/min. 

Optimal values of output quantities are listed in Table 3. 

 

Table 3 

Results of the optimized casting parameters. 

Description & units Starting 

value 

Optimal 

value 

Metallurgical length [m] 10.25 10.95 

Shell thickness at the 

end of the mould [m] 

0.0115 0.01325 

Billet surface 

temperature at 

straightening start 

position [C] 

1112.4 1156 

Casting speed [m/min] 1.54 1.793 

 

In both optimization examples, feed forward artificial 

neural networks with back propagation were used to build 

the models. Different combinations of layouts and 

training parameters, decided on the basis of past 

experience ([7]-[9]) and some additional experimentation 

were tried. More than 20 trainings with both 

NeuronDotNet and Aforge libraries were performed in 

each case, trying out different parameters. Good results 

were achieved by using ANN with one hidden layer 

containing 20-40 neurons. Both libraries performed 

similarly in terms of final results, while NeuroDotNet was 

slightly faster. The learning rate, which determines the 

learning speed, was set to 0.3. Momentum, which 

determines how much of the previous corrective term 

should be applied in the current training, was set to 0.6. 

4.3 Modeling of the Whole Production Line in a 

Steel Plant 

While modeling and optimization of a casting process 

alone makes sense in counteracting specific difficulties of 

this specific process, it is difficult to relate economy of 

production in a steel plant to performance of a single 

process. Production cost and final properties of the 

products depend on the whole chain of subsequent 

processes. This typically consists of casting, reheating, 

multiple stage rolling, and cooling. These processes are 

interdependent in the sense that the outcome of one 

process influences the performance of the following 

process. If only a single process within the chain is 

considered, any modification in optimization parameters 

should be followed by verification of how this affects the 

subsequent processes and thus overall performance.  

An alternative approach is to model the whole chain of 

processes rather than a single process. At the current stage 

of development, there exist limitations that prevent 
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achievement of sufficient accuracy of numerical models 

of the whole process chain in order to use such models 

directly in optimization procedures. The approach that we 

envisage is to build a neural network-based model of the 

process chain on basis of measured data gathered and 

stored in production line over longer time. Data used 

include final outcomes such as tensile strength, maximal 

elongation and shrinkage, flow limit and hardness, 

measured after production with different process 

parameters. Figure 5 outlines preliminary results in form 

of parametric study that shows dependence of the final 

hardness of produced steel (at the end of the process 

chain) on carbon mass fraction. Different curves 

correspond to different points in parameter space around 

which variation of the observed parameter is performed. 

 

 
Figure 5: Steel hardness after rolling as a function of 

carbon mass fraction, calculated by the ANN model. Solid 

curves correspond to 24 parametric model, and dotted 

curves correspond to 35 parametric model. 

 

At the current stage, results of the model have been 

examined by experts from steel manufacturing industry, 

who confirmed that the trends exhibited in various 

parametric studies are consistent with expectations. 

Verification of results was also performed in a standard 

way by using part of the measured data as validation data 

that was excluded from training. Training was performed 

on 2500 data sets obtained from the steelwork’s database, 

of which 100 were used for validation. Errors obtained in 

validation points were of order of one to five per cent 

relative to the whole range of the corresponding output 

values. Additional difficulty is in the nature of data where 

sets are grouped in clusters around some standard steel 

qualities commonly used in industry. Work is currently 

continuing towards more thorough investigation of 

response and error analysis, which will also be 

accompanied by larger data when available from the 

production line.  

 
5. Conclusion

 
Two applications of optimization system that utilizes 

artificial neural networks – based model of continuous 

casting of steel were presented. Further development will 

be directed to approximation of response for a series of 

processes and eventually the complete process chain 

(including casting, heat treatment and rolling). This would 

have better practical value because final product 

properties (that are also widely tested in production 

facilities) are achieved only after the last processing in the 

chain. This is also more challenging due to a large number 

of influential parameters that need to be considered, 

difficulties associated with accurate modeling of a chain 

of processing procedures, and possibility of defects in 

available data. Sensible results have been obtained in 

modelling of the complete production line, however 

further effort must be invested in order to ensure that the 

obtained models are reliable and accurate enough to use 

them as support in deciding about process parameters 

settings in a real industrial environment. 
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